Метод аппроксимации в Microsoft Excel. Аппроксимация характеристик нелинейных элементов Аппроксимация нелинейной функции

Часто необходимо иметь аналитические выражения для вольт - амперных характеристик нелинейных элементов. Эти выражения могут лишь приближенно представлять ВАХ, поскольку физиче­ские закономерности, которым подчиняются зависимости между напряжениями и токами в нелинейных при­борах, не выражаются аналитически.

Задача приближенного аналитического представления функции, заданной графически или таблицей значений, в заданных пределах изменения ее аргумента (независимой переменной) называется аппроксимацией. При этом во-первых, делается выбор аппроксимирующей функции, т. е. функции, с помощью которой приближенно представляется заданная зависи­мость, и, во-вторых, выбор критерия оценки «близости» этой зави­симости и аппроксимирующей ее функции.

В качестве аппроксимирующих функций используются, чаще всего, алгебраические полиномы, некоторые дробные рациональ­ные, экспоненциальные и трансцендентные функции или совокупность линейных функций (отрезков пря­мых линий).

Будем считать, что ВАХ нелинейного элемента i = fun(u) задана графически, т. е. определена в каждой точке интервала U min и U max , и представляет собой однозначную непрерывную функцию переменной и. Тогда задача аналитического представления вольт-амперной характеристики может рассматриваться как задача ап­проксимации заданной функции ξ(х) выбранной аппроксимирую­щей функцией f (x ).

О близости аппроксимирующей f (x )и аппроксимируемой ξ(х )функций или, иными словами, о погрешности аппроксимации, обычно судят по наибольшему абсолютному значению разности между этими функциями в интервале аппроксимации а х b, т. е. по величине

Δ= max‌‌│ f (x )- ξ(x )│

Часто критерием близости выбирается среднее квадратичное значение разности между указанными функциями в интервале ап­проксимации.

Иногда под близостью двух функций f(x )и ξ(x ) понимают сов­падение в заданной точке

x = Хо самих функций и п + 1 их произ­водных.

Наиболее распространенным способом приближения аналитической функции к заданной является интерполяция (метод выбран­ных точек), когда добиваются совпадения функций f(x )и ξ(x ) в выбранных точках (узлах интерполяции) X k , k = 0, 1, 2, ..., п.

Погрешность аппроксимации может быть достигнута тем мень­шей, чем больше число варьируемых параметров входит в аппрок­симирующую функцию, т. е., например, чем выше степень аппрок­симирующего полинома или чем больше число отрезков прямых содержит аппроксимирующая линейно-ломаная функция. Одно­временно с этим, естественно, растет объем вычислений, как при решении задачи аппроксимации, так и при последующем анализе нелинейной цепи. Простота этого анализа наряду с особенностями аппроксимируемой функции в пределах интервала аппроксимации служит одним из важнейших критериев при выборе типа аппрок­симирующей функции.

В задачах аппроксимации вольт-амперных характеристик элек­тронных и полупроводниковых приборов стремиться к высокой точности их воспроизведения, как правило, нет необходимости ввиду значительного разброса характеристик приборов от образца к образцу и существенного влияния на них дестабилизирующих факторов, например, температуры в полупроводниковых приборах. В большинстве случаев достаточно «правильно» воспроизвести об­щий усредненный характер зависимости i = f (u )в пределах ее ра­бочего интервала. Для того чтобы была возможность аналитически рассчитывать цепи с нелинейными элементами, необходимо иметь математические выражения для характеристик элементов. Сами эти характеристики обычно являются экспериментальными, т.е. полученными в результате измерений соответствующих элементов, а затем на этой основе формируются справочные (типовые) данные. Процедуру математического описания некоторой заданной функции в математике называют аппроксимацией этой функции. Существует целый ряд типов аппроксимации: по выбранным точкам, по Тейлору, по Чебышеву и др. В конечном итоге необходимо получить математическое выражение, которое с какими-то заданными требованиями удовлетворяло исходной, аппроксимирующей функции.

Рассмотрим простейший способ: метод выбранных точек или узлов интерполяции степенным полиномом.

Необходимо определить коэффициенты полинома. Для этого выбирается (n+1) точек на заданной функции и составляется система уравнений:

Из этой системы находятся коэффициенты а 0 , а 1 , а 2 , …, а n .

В выбранных точках аппроксимирующая функция будет совпадать с исходной, в других точках – отличаться (сильно или нет – зависит от степенного полинома).

Можно использовать экспоненциальный полином:

Второй метод: метод аппроксимации по Тейлору . В этом случае выбирается одна точка, где будет совпадение исходной функции с аппроксимирующей, но дополнительно ставится условие, чтобы в этой точке совпадали еще и производные.

Аппроксимация по Батерворту : выбирается простейший полином:

В этом случае можно определить максимальное отклонение ε на краях диапазона.

Аппроксимация по Чебышеву : является степенной, там устанавливается совпадение в нескольких точках и минимизируется максимальное отклонение аппроксимирующей функции от исходной. В теории аппроксимации функций доказывается, что наиболь­шее по абсолютной величине отклонение полинома f (x )степени п от непрерывной функции ξ(х ) будет минимально возможным, если в интервале приближения а х b разность

f(x ) - ξ(х ) не мень­ше, чем п + 2 раза принимает свои последовательно чередующиеся предельные наибольшие f (x ) - ξ(х ) = L > 0 и наименьшие f (x ) - ξ(х ) = -L значения (критерий Чебышева).

Во многих прикладных задачах находит применение полиноми­альная аппроксимация по среднеквадратическому критерию близо­сти, когда параметры аппроксимирующей функции f (x ) выбирают­ся из условия обращения в минимум в интервале аппроксимации а х b квадрата отклонения функции f (x ) от заданной непре­рывной функции ξ(х ), т. е., из условия:

Λ= 1/b-a∫ a [f (x )- ξ(x )] 2 dx = min . (7)

В соответствии с правилами отыскания экстремумов решение задачи сводится к решению системы линейных уравнении, которая образуется в результате приравнивания к нулю первых частных производных функции Λ по каждому из искомых коэффициентов a k аппроксимирующего полинома f (x ), т. е. уравнений

дΛ ∕дa 0 =0; дΛ ∕дa 1 =0; дΛ ∕дa 2 =0, . . . , дΛ ∕дa n =0. (8)

Доказано, что и эта система уравнений имеет единственное ре­шение. В простейших случаях оно находится аналитически, а в общем случае - численно.

Чебышев установил, что должно для максимальных отклонений выполняться равенство:

В инженерной практике используется еще так называемая кусочно-линейная аппроксимация – это описание заданной кривой отрезками прямых линий.

В пределах каждого из линиаризированных участков вольт - амперной характеристики применимы все методы анализа колебаний в линейных электрических цепях. Ясно, что, чем на большее число линеаризированных участков разбивается заданная вольт-амперная характеристика, тем точнее она может быть аппроксимирована и тем больше объем вычислений в ходе анализа колебаний в цепи.

Во многих прикладных задачах анализа колебаний в нелиней­ных резистивных цепях аппроксимируемая вольт - амперная харак­теристика в интервале аппроксимации с достаточной точностью пред­ставляется двумя или тремя отрезками прямых.

Подобная аппроксимация вольт - амперных характеристик дает в большинстве случаев вполне удовлетворительные по точности результаты анализа колебаний в нели­нейной резистивной цепи при «небольших» по величине воздействи­ях на нелинейный элемент, т. е. ко­гда мгновенные значения токов в нелинейном элементе изменяются в предельно допустимых границах от I = 0 до I = I мах

Характеристики реальных нелинейных элементов, которые определяют обычно с помощью экспериментальных исследований, имеют сложный вид и представляются в виде таблиц или графиков. В то же время для анализа и расчета цепей необходимо аналитическое представление характеристик, т.е. представление в виде достаточно простых функций. Процесс составления аналитического выражения для характеристик, представленных графически или таблично, называется аппроксимацией.

При аппроксимации решаются следующие проблемы:

1. Определение области аппроксимации, которая зависит от диапазона изменения входных сигналов.

2. Определение точности аппроксимации. Понятно, что аппроксимация дает приблизительное представление характеристики в виде какого-либо аналитического выражения. Поэтому необходимо количественно оценить степень приближения аппроксимирующей функции к экспериментально определенной характеристике. Чаще всего используются:

показатель равномерного приближения – аппроксимирующая функция не должна отличаться от заданной функции более чем на некоторое число , т.е.

;

показатель среднего квадратического приближения – аппроксимирующая функция не должна отличаться от заданной функции в среднем квадратическом приближении более чем на некоторое число , т.е.

;

узловое приближение (интерполяционное) – аппроксимирующая функция должна совпадать с заданной функцией в некоторых выбранных точках.

Существуют различные способы аппроксимации. Наиболее часто для аппроксимации ВАХ применяют аппроксимацию степенным полиномом и кусочно-линейную аппроксимацию, реже – аппроксимацию с использованием показательных, тригонометрических или специальных функций (Бесселя, Эрмита и др.).

7.2.1. Аппроксимация степенным полиномом

Нелинейную вольт-амперную характеристику в окрестности рабочей точки представляют конечным числом слагаемых ряда Тейлора:

Количество членов ряда определяется требуемой точностью аппроксимации. Чем больше членов ряда, тем точнее аппроксимация. На практике необходимой точности добиваются, используя аппроксимацию полиномами второй и третьей степени. Коэффициенты – это числа, которые достаточно просто определяются из графика ВАХ, что иллюстрируется примером.

Пример.

Аппроксимировать представленную на рис. 7.1,а ВАХ в окрестности рабочей точки степенным полиномом второй степени, т.е. полиномом вида

Выберем область аппроксимации от 0,2 В до 0,6 В. Для решения задачи необходимо определить три коэффициента . Поэтому ограничимся тремя узловыми точками (в середине и на границах выбранного диапазона), для которых составляем систему трех уравнений:


Рис. 7.1. Аппроксимация ВАХ транзистора

Решая систему уравнений, определяем , , . Следовательно, аналитическое выражение, описывающее график ВАХ, имеет вид

Заметим, что аппроксимация степенным полиномом используется в основном для описания отдельных фрагментов характеристик. При значительных отклонениях входного сигнала от рабочей точки точность аппроксимации может значительно ухудшиться.

Если ВАХ задана не графически, а какой-либо аналитической функцией и возникла необходимость представить ее степенным полиномом, то коэффициенты вычисляются по известной формуле

.

Нетрудно заметить, что представляет собой крутизну ВАХ в рабочей точке. Значение крутизны существенно зависит от положения рабочей точки.

В некоторых случаях удобнее характеристику представлять рядом Маклорена

7.2.2. Кусочно-линейная аппроксимация

Если входной сигнал изменяется по величине в больших пределах, то ВАХ можно аппроксимировать ломаной линией, состоящей из нескольких отрезков прямых. На рис. 7.1,б показана ВАХ транзистора, аппроксимированная тремя отрезками прямых.

Математическая формула аппроксимированной ВАХ

Данный вид аппроксимации связан с двумя важными параметрами нелинейного элемента: напряжением начала характеристики и ее крутизной . Для увеличения точности аппроксимации увеличивают количество отрезков линий. Однако это усложняет математическую формулу ВАХ.

Среди различных методов прогнозирования нельзя не выделить аппроксимацию. С её помощью можно производить приблизительные подсчеты и вычислять планируемые показатели, путем замены исходных объектов на более простые. В Экселе тоже существует возможность использования данного метода для прогнозирования и анализа. Давайте рассмотрим, как этот метод можно применить в указанной программе встроенными инструментами.

Наименование данного метода происходит от латинского слова proxima – «ближайшая» Именно приближение путем упрощения и сглаживания известных показателей, выстраивание их в тенденцию и является его основой. Но данный метод можно использовать не только для прогнозирования, но и для исследования уже имеющихся результатов. Ведь аппроксимация является, по сути, упрощением исходных данных, а упрощенный вариант исследовать легче.

Главный инструмент, с помощью которого проводится сглаживания в Excel – это построение линии тренда. Суть состоит в том, что на основе уже имеющихся показателей достраивается график функции на будущие периоды. Основное предназначение линии тренда, как не трудно догадаться, это составление прогнозов или выявление общей тенденции.

Но она может быть построена с применением одного из пяти видов аппроксимации:

  • Линейной;
  • Экспоненциальной;
  • Логарифмической;
  • Полиномиальной;
  • Степенной.

Рассмотрим каждый из вариантов более подробно в отдельности.

Способ 1: линейное сглаживание

Прежде всего, давайте рассмотрим самый простой вариант аппроксимации, а именно с помощью линейной функции. На нем мы остановимся подробнее всего, так как изложим общие моменты характерные и для других способов, а именно построение графика и некоторые другие нюансы, на которых при рассмотрении последующих вариантов уже останавливаться не будем.

Прежде всего, построим график, на основании которого будем проводить процедуру сглаживания. Для построения графика возьмем таблицу, в которой помесячно указана себестоимость единицы продукции, производимой предприятием, и соответствующая прибыль в данном периоде. Графическая функция, которую мы построим, будет отображать зависимость увеличения прибыли от уменьшения себестоимости продукции.


Сглаживание, которое используется в данном случае, описывается следующей формулой:

В конкретно нашем случае формула принимает такой вид:

y=-0,1156x+72,255

Величина достоверности аппроксимации у нас равна 0,9418 , что является довольно приемлемым итогом, характеризующим сглаживание, как достоверное.

Способ 2: экспоненциальная аппроксимация

Теперь давайте рассмотрим экспоненциальный тип аппроксимации в Эксель.


Общий вид функции сглаживания при этом такой:

где e – это основание натурального логарифма.

В конкретно нашем случае формула приняла следующую форму:

y=6282,7*e^(-0,012*x)

Способ 3: логарифмическое сглаживание

Теперь настала очередь рассмотреть метод логарифмической аппроксимации.


В общем виде формула сглаживания выглядит так:

где ln – это величина натурального логарифма. Отсюда и наименование метода.

В нашем случае формула принимает следующий вид:

y=-62,81ln(x)+404,96

Способ 4: полиномиальное сглаживание

Настал черед рассмотреть метод полиномиального сглаживания.


Формула, которая описывает данный тип сглаживания, приняла следующий вид:

y=8E-08x^6-0,0003x^5+0,3725x^4-269,33x^3+109525x^2-2E+07x+2E+09

Способ 5: степенное сглаживание

В завершении рассмотрим метод степенной аппроксимации в Excel.


Данный способ эффективно используется в случаях интенсивного изменения данных функции. Важно учесть, что этот вариант применим только при условии, что функция и аргумент не принимают отрицательных или нулевых значений.

Общая формула, описывающая данный метод имеет такой вид:

В конкретно нашем случае она выглядит так:

y = 6E+18x^(-6,512)

Как видим, при использовании конкретных данных, которые мы применяли для примера, наибольший уровень достоверности показал метод полиномиальной аппроксимации с полиномом в шестой степени (0,9844 ), наименьший уровень достоверности у линейного метода (0,9418 ). Но это совсем не значит, что такая же тенденция будет при использовании других примеров. Нет, уровень эффективности у приведенных выше методов может значительно отличаться, в зависимости от конкретного вида функции, для которой будет строиться линия тренда. Поэтому, если для этой функции выбранный метод наиболее эффективен, то это совсем не означает, что он также будет оптимальным и в другой ситуации.

Если вы пока не можете сразу определить, основываясь на вышеприведенных рекомендациях, какой вид аппроксимации подойдет конкретно в вашем случае, то есть смысл попробовать все методы. После построения линии тренда и просмотра её уровня достоверности можно будет выбрать оптимальный вариант.

Пусть в результате измерений в процессе опыта получено табличное задание некоторой функции f(х), выражающей связь между двумя географическими параметрами:

х x 1 х 2 x n
f(x) y 1 у 2 y n

Конечно, можно найти формулу, выражающую эту зависимость аналитически, применив метод интерполяции. Однако, совпадение значений полученного аналитического задания функции в узлах интерполяции с имеющимися эмпирическими данными часто может вовсе не означать совпадение характеров поведения исходной и интерполирующей функции на всем интервале наблюдения. Кроме того, табличная зависимость географических показателей всегда получается в результате измерений различными приборами, имеющими определенную и не всегда достаточно малую погрешность измерения. Требование точного совпадения значений приближающей и приближаемой функций в узлах является тем более неоправданным, если значения функции f(х), полученные в результате измерений уже сами являются приближенными.

Задача аппроксимации функции одной переменной с самого начала обязательно учитывает характер поведения исходной функции на всем интервале наблюдений. Формулировка задачи выглядит следующим образом. Функция у= f(х) задана таблицей (1). Необходимо найти функцию заданного вида:

которая в точках x 1 , x 2 , …, x n принимает значения, как можно более близкие к табличным y 1 , y 2 , …, y n .

На практике вид приближающей функции чаще всего определяют путем сравнения вида приближенно построенного графика функции у= f(х) с графиками известных исследователю функций, заданных аналитически (чаще всего простых по виду элементарных функций). А именно, по таблице (1) строится точечный график f(x), затем проводится плавная кривая, по возможности наилучшим образом отражающая характер расположения точек. По полученной таким образом кривой на качественном уровне устанавливается вид приближающей функции.

Рассмотрим рисунок 6.

На рисунке 6 изображены три ситуации:

  • На графике (а) взаимосвязь х и у близка к линейной; прямая линия здесь близка к точкам наблюдений, и последние отклоняются от нее лишь в результате сравнительно небольших случайных воздействий.
  • На графике (b) реальная взаимосвязь величин х и у описывается нелинейной функцией, и какую бы мы ни провели прямую линию, отклонение точек наблюдения от нее будет существенным и неслучайным. В то же время, проведенная ветка параболы достаточно хорошо отражает характер зависимости между величинами.
  • На графике (с) явная взаимосвязь между переменными х и у отсутствует; какую бы мы ни выбрали формулу связи, результаты ее параметризации будут здесь неудачными. В частности, обе выбранные прямые одинаково плохи для того, чтобы делать выводы об ожидаемых значениях переменной у по значениям переменной х .

Следует заметить, что строгая функциональная зависимость для таблицы исходных данных наблюдается редко, ибо каждая из участвующих в ней величин может зависеть от многих случайных факторов. Однако формула (2) (ее называют эмпирической формулой или уравнением регрессии у на х ) интересна тем, что позволяет находить значения функции f для нетабличных значений х , "сглаживая" результаты измерений величины у , т.е. на всем интервале изменения х . Оправданность такого подхода определяется в конечном счете практической полезностью полученной формулы.

Через имеющееся "облако" точек всегда можно попытаться провести линию установленного вида, которая является наилучшей в определенном смысле среди всех линий данного вида, то есть "ближайшей" к точкам наблюдений по их совокупности. Для этого определим вначале понятие близости линии к некоторому множеству точек на плоскости. Меры такой близости могут быть различными . Однако, любая разумная мера должна быть, очевидно, связана с расстоянием от точек наблюдения до рассматриваемой линии (задаваемой уравнением y=F(x) ).

Предположим, что приближающая функция F(x) в точках х 1 , x 2 , ..., x n имеет значения y 1 , y 2 , ..., y n . Часто в качестве критерия близости используется минимум суммы квадратов разностей наблюдений зависимой переменной y i и теоретических, рассчитанных по уравнению регрессии значений y i . Здесь считается, что y i и x i - известные данные наблюдений, а F - уравнение линии регрессии с неизвестными параметрами (формулы для их вычисления будут приведены ниже). Метод оценивания параметров приближающей функции, минимизирующий сумму квадратов отклонений наблюдений зависимой переменной от значений искомой функции, называется методом наименьших квадратов (МНК) или Least Squares Method (LS).

Итак, задачу приближения функции f теперь можно сформулировать следующим образом: для функции f , заданной таблицей (1), найти функцию F определенного вида так, чтобы сумма квадратов Ф была наименьшей.

Рассмотрим метод нахождения приближающей функции в общем виде на примере аппроксимирующей функции с тремя параметрами:

(3)

Пусть F(x i , a, b, c) = y i , i=1, 2, ..., n. Сумма квадратов разностей соответствующих значений f и F будет иметь вид:

Эта сумма является функцией Ф(а, b, c) трех переменных (параметров a, b и c ). Задача сводится к отысканию ее минимума. Используем необходимое условие экстремума:

Получаем систему для определения неизвестных параметров a, b, c.

(5)

Решив эту систему трех уравнений с тремя неизвестными относительно параметров a, b, c, мы и получим конкретный вид искомой функции F(x, a, b, c). Как видно из рассмотренного примера, изменение количества параметров не приведет к искажению сущности самого подхода, а выразится лишь в изменении количества уравнений в системе (5).

Естественно ожидать, что значения найденной функции F(x, a, b, c) в точках х 1 , x 2 , ..., x n , будут отличаться от табличных значений y 1 , y 2 , ..., y n . Значения разностей y i -F(x i ,a, b, c)=e i (i=1, 2, ..., n) называются отклонениями измеренных значений y от вычисленных по формуле (3). Для найденной эмпирической формулы (2) в соответствии с исходной таблицей (1) можно, следовательно найти

сумму квадратов отклонений , которая в соответствии с методом наименьших квадратов для заданного вида приближающей функции (и найденных значений параметров) должна быть наименьшей. Из двух разных приближений одной и той же табличной функции, следуя методу наименьших квадратов, лучшим нужно считать то, для которого сумма (4) имеет наименьшее значение.

В экспериментальной практике в качестве приближающих функций в зависимости от характера точечного графика f часто используются приближающие функции с двумя параметрами:

Очевидно, что когда вид приближающей функции установлен, задача сводится только к отысканию значений параметров.

Рассмотрим наиболее часто встречающиеся в практических исследованиях эмпирические зависимости.

3.3.1. Линейная функция (линейная регрессия). Начальным пунктом анализа зависимостей обычно является оценка линейной зависимости переменных. Следует при этом учитывать, однако, что "наилучшая" по методу наименьших квадратов прямая линия всегда существует, но даже наилучшая не всегда является достаточно хорошей. Если в действительности зависимость y=f(x) является квадратичной, то ее не сможет адекватно описать никакая линейная функция, хотя среди всех таких функций обязательно найдется "наилучшая". Если величины х и у вообще не связаны, мы также всегда сможем найти "наилучшую" линейную функцию y=ax+b для данной совокупности наблюдений, но в этом случае конкретные значения а и b определяются только случайными отклонениями переменных и сами будут очень сильно меняться для различных выборок из одной и той же генеральной совокупности.

Рассмотрим теперь задачу оценки коэффициентов линейной регрессии более формально. Предположим, что связь между x и y линейна и искомую приближающую функцию будем искать в виде:

Найдем частные производные по параметрам:

Подставим полученные соотношения в систему вида (5):

или, деля каждое уравнение на n:

Введем обозначения:

(7)

Тогда последняя система будет иметь вид:

(8)

Коэффициенты этой системы M x , M y , M xy , M x 2 - числа, которые в каждой конкретной задаче приближения могут быть легко вычислены по формулам (7), где x i , y i - значения из таблицы (1). Решив систему (8), получим значения параметров a и b , а следовательно, и конкретный вид линейной функции (6).

Необходимым условием для выбора линейной функции в качестве искомой эмпирической формулы является соотношение :

3.3.2. Квадратичная функция (квадратичная регрессия). Будем искать приближающую функцию в виде квадратного трехчлена:

Находим частные производные:

Составим систему вида (5):

После несложных преобразований получается система трех линейных уравнений с тремя неизвестными a, b, c . Коэффициенты системы, так же как и в случае линейной функции, выражаются только через известные данные из таблицы (1):

(10)

Здесь использованы обозначения (7), а также

Решение системы (10) дает значение параметров a, b и с для приближающей функции (9).

Квадратичная регрессия применяется, если все выражения вида у 2 -2y 1 + y 0 , y 3 -2 y 2 + y 1 , y 4 -2 y 3 + y 2 и т.д. мало отличаются друг от друга.

3.3.3. Степенная функция (геометрическая регрессия).Найдем теперь приближающую функция в виде:

(11)

Предполагая, что в исходной таблице (1) значения аргумента и значения функции положительны, прологарифмируем равенство (11) при условии а>0 :

Так как функция F является приближающей для функции f , функция lnF будет приближающей для функции lnf . Введем новую переменную u=lnx ; тогда, как следует из (12), lnF будет функцией от u : Ф(u) .

Обозначим

Теперь равенство (12) принимает вид:

т.е. задача свелась к отысканию приближающей функции в виде линейной. Практически для нахождения искомой приближающей функции в виде степенной (при сделанных выше предположениях) необходимо проделать следующее:

1. по данной таблице (1) составить новую таблицу, прологарифмировав значения x и y в исходной таблице;

2. по новой таблице найти параметры А и В приближающей функции вида (14);

3. использовав обозначения (13), найти значения параметров a и m и подставить их в выражение (11).

Необходимым условием для выбора степенной функции в качестве искомой эмпирической формулы является соотношение :

3.3.4. Показательная функция. Пусть исходная таблица (1) такова, что приближающую функцию целесообразно искать в виде показательной функции:

Прологарифмируем равенство (15):

(16)

Приняв обозначения (13), перепишем (16) в виде:

(17)

Таким образом, для нахождения приближающей функции в виде (15) нужно прологарифмировать значения функции в исходной таблице (1) и, рассматривая их совместно с исходными значениями аргумента, построить для новой таблицы приближающую функцию вида (17). Вслед за этим в соответствии с обозначениями (13) остается получить значения искомых параметров a и b и подставить их в формулу (15).

Необходимым условием для выбора показательной функции в качестве искомой эмпирической формулы является соотношение :

.

3.3.5. Дробно-линейная функция. Будем искать приближающую функцию в виде:

(18)

Равенство (18) перепишем следующим образом:

Из последнего равенства следует, что для нахождения значений параметров a и b по заданной таблице (1) нужно составить новую таблицу, у которой значения аргумента оставить прежними, а значения функции заменить обратными числами, после чего для полученной таблицы найти приближающую функцию вида ax+b . Найденные значения параметров a и b подставить в формулу (18).

Необходимым условием для выбора дробно-линейной функции в качестве искомой эмпирической формулы является соотношение :

.

3.3.6. Логарифмическая функция. Пусть приближающая функция имеет вид:

Легко видеть, что для перехода к линейной функции достаточно сделать подстановку lnx=u . Отсюда следует, что для нахождения значений a и b нужно прологарифмировать значения аргумента в исходной таблице (1) и, рассматривая полученные значения в совокупности с исходными значениями функции, найти для полученной таким образом новой таблицы приближающую функцию в виде линейной. Коэффициенты a и b найденной функции подставить в формулу (19).

Необходимым условием для выбора логарифмической функции в качестве искомой эмпирической формулы является соотношение :

.

3.3.7. Гипербола. Если точечный график, построенный по таблице (1), дает ветвь гиперболы, приближающую функцию можно искать в виде.