Беспроводное передача электричества на расстоянии. Беспроводное электричество поразило своих создателей. Питание электрокара беспроводным способом

Многие годы ученые бьются над вопросом минимизации электрических расходов. Есть разные способы и предложения, но все, же самой известной теорией является беспроводная передача электричества. Предлагаем рассмотреть, как она выполняется, кто является её изобретателем и почему пока что её не воплотили в жизнь.

Теория

Беспроводное электричество – это буквально передача электрической энергии без проводов. Люди часто сравнивают беспроводную передачу электрической энергии с передачей информации, например, радио, сотовые телефоны, или Wi-Fi доступ в Интернет. Основное различие заключается в том, что с радио-или СВЧ-передач – это технология, направленная на восстановление и транспортировку именно информации, а не энергии, которая изначально была затрачена на передачу.

Беспроводной электроэнергии является относительно новой областью технологии, но достаточно динамично развивающейся. Сейчас разрабатываются методы, как эффективно и безопасно передавать энергию на расстоянии без перебоев.

Как работает беспроводное электричество

Основная работа основана именно на магнетизме и электромагнетизме, как и в случае с радиовещанием. Беспроводная зарядка, также известна как индуктивная зарядка, основана на нескольких простых принципах работы, в частности технология требует наличия двух катушек. Передатчика и приемника, которые вместе генерируют переменное магнитное поле непостоянного тока. В свою очередь это поле вызывает напряжение в катушке приемника; это может быть использовано для питания мобильного устройства или зарядки аккумулятора.

Если направить электрический ток через провод, то вокруг кабеля создается круговое магнитное поле. Несмотря на то, что магнитное поле воздействует и на петлю, и на катушку сильнее всего оно проявляется именно на кабеле. Когда возьмете второй моток проволоки, на который не поступает электрический ток, проходящий через него, и место, в которое мы установим катушку в магнитном поле первой катушки, электрический ток от первой катушки будет передаваться через магнитное поле и через вторую катушку, создавая индуктивную связь.

Как пример возьмем электрическую зубную щетку. В ней зарядное устройство подключено к розетке, которая отправляет электрический ток на витой провод внутри зарядного устройства, создающего магнитное поле. Существует вторая катушка внутри зубной щетки, когда ток начинает поступать и на неё, благодаря образовавшемуся МП, начинается заряд щетки без её непосредственного подключения к сети питания 220 В.

История

Беспроводная передача энергии в качестве альтернативы передачи и распределения электрических линий, впервые была предложена и продемонстрирована Никола Тесла. В 1899 году Тесла презентовал беспроводную передачу на питание поля люминесцентных ламп, расположенных в двадцати пяти милях от источника питания без использования проводов. Но в то время было дешевле сделать проводку из медных проводов на 25 миль, а не строить специальные электрогенераторы, которых требует опыт Тесла. Патент ему так и не выдали, а изобретение осталось в закромах науки.

В то время как Тесла был первым человеком, который смог продемонстрировать практические возможности беспроводной связи еще в 1899 году, сегодня, в продаже есть совсем немного приборов, это беспроводные щетки наушники, зарядки для телефонов и прочее.

Технология беспроводной связи

Беспроводной передачи энергии включает в себя передачу электрической энергии или мощности на расстоянии без проводов. Таким образом, основная технология лежит на концепции электроэнергии, магнетизма и электромагнетизма.

Магнетизм

Это фундаментальная сила природы, которая провоцирует определенные типы материала притягивать или отталкивать друг друга. Единственными постоянными магнитами считаются полюса Земли. Ток потока в контуре генерирует магнитные поля, которые отличаются от осциллирующих магнитных полей скоростью и временем, потребным для генерации переменного тока (AC). Силы, которые при этом появляются, изображает схема ниже.

Так появляется магнетизм

Электромагнетизм – это взаимозависимость переменных электрических и магнитных полей.

Магнитная индукция

Если проводящий контур подключен к источнику питания переменного тока, он будет генерировать колебательное магнитное поле внутри и вокруг петли. Если второй проводящий контур расположен достаточно близко, он захватит часть этого колеблющегося магнитного поля, которое в свою очередь порождает или индуцирует электрический ток во второй катушке.

Видео: как происходит беспроводная передача электричества

Таким образом, происходит электрическая передача мощности от одного цикла или катушки к другой, что известно как магнитная индукция. Примеры такого явления используются в электрических трансформаторах и генератора. Это понятие основано на законах электромагнитной индукции Фарадея. Там, он утверждает, что, когда есть изменение магнитного потока, соединяющегося с катушкой ЭДС, индуцированного в катушке, то величина равна произведению числа витков катушки и скорости изменения потока.


Мощностная муфта

Эта деталь необходима, когда одно устройство не может передавать энергию на другой прибор.

Магнитная связь генерируется, когда магнитное поле объекта способно индуцировать электрический ток с другими устройствами в поле его досягаемости.

Два устройства, как говорят, взаимно индуктивно-связанной или магнитную связь, когда они выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода посредством электромагнитной индукции. Это связано с взаимной индуктивности

Технология


Принцип индуктивной связи

Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью.
Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.

Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.


Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.

Существует также концепция беспроводной ионизированной связи.

Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м . Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.

Плюсы и минусы

Конечно, у этого изобретения есть свои преимущества перед проводными методиками, и недостатки. Предлагаем их рассмотреть.

К достоинствам относятся:

  1. Полное отсутствие проводов;
  2. Не нужны источники питания;
  3. Необходимость батареи упраздняется;
  4. Более эффективно передается энергия;
  5. Значительно меньше нужно технического обслуживания.

К недостаткам же можно отнести следующее:

  • Расстояние ограничено;
  • магнитные поля не так уж и безопасны для человека;
  • беспроводная передача электричества, с помощью микроволн или прочих теорий практически неосуществима в домашних условиях и своими руками;
  • высокая стоимость монтажа.

Мы презентуем устройство передачи электроэнергии без проводов с коэффициентом полезного действия (КПД) около 100%. В дальнейшем будет обоснована величина КПД ≈ 100% и, разумеется, мы демонстрируем эту величину нашим экспериментальным устройством.

Важность проблемы беспроводной передачи электроэнергии не подлежит сомнению – преодоление естественных преград (реки, горы и долины); резервное электроснабжение, электротранспорт, решение ряда задач беспроводного электропитания бытовых и промышленных устройств и т.д. – всё это элементы названной проблемы.

Немного истории

Впервые проблему беспроводной передачи электроэнергии обозначил на заре прошлого века Н. Тесла. В основе его демонстрационного устройства был положен метод излучения и приема электромагнитных волн открытым резонансным контуром, который содержит антенну – емкость и катушку провода – индуктивность. Характерные показатели устройства Теслы сводятся к следующим: КПД = 4%, дальность передачи – 42 км, максимальный габарит башни-антенны – 60 м, длина волны – 2000 м. Существенно, что в устройстве Теслы планета Земля рассматривается как один из проводов в передаче электроэнергии, поскольку излучение и прием столь длинных волн без заземления не эффективны.

После экспериментов Теслы, на протяжении прошлого ХХ века все попытки осуществить беспроводную передачу электроэнергии с приемлемым КПД оказались безрезультатными.

В текущем десятилетии прямо или косвенно сообщается о работах в Масачуссетском Технологическом Университете под руководством М. Соля-чича. В основе их работ лежит известный индукционный, при помощи магнитного поля, метод передачи электроэнергии, который реализован резонансными плоскими катушками индуктивности. Этот метод в идеале обеспечивает КПД = 50%, при дальности передачи соизмеримой с габаритами катушек-антенн. Характерные показатели их демонстрационного устройства сводятся к следующим: КПД ≈ 40%, дальность передачи – 2 м, габарит катушек-антенн – 0,6 м, длина волны – 30 м.

Энергетически замкнутая система

В нашем устройстве, как и в устройстве Теслы, переносчиком энергии являются электромагнитные волны, т.е. действует общеизвестный вектор Пойнтинга.

Теоретически обосновано и экспериментально подтверждено следующее: передающая и приемная антенны устройства беспроводной передачи электроэнергии образуют энергетически замкнутую систему, частично включающую в себя и энергию электромагнитного поля Земли; через возбуждение (активацию) электромагнитного поля Земли в этой системе происходит передача электроэнергии от передающей антенны к приемной с КПД ≈ 100% (фиг. 1).

Фиг. 1

Фиг. 2

Пользуясь этой антенной, несложно сформулировать задачу, решение которой обеспечит передачу электроэнергии без проводов:

1. Передающая и приемная антенны должны возбуждать (активировать) электромагнитное поле Земли в локальной (ограниченной) области пространства;

2. Возбужденное электромагнитное поле Земли должно быть также локальным в пространстве и не потреблять энергии (должно представлять собой стоячую электромагнитную волну между передающей и приемной антеннами).

Решение этой задачи нереально с антеннами, созданными на основе пространственных представлений геометрии Эвклида с ее знаменитым 5ым постулатом – постулатом о параллельных прямых. Этот постулат в школьных учебниках гласит: через точку, не лежащую на данной прямой, можно провести только одну прямую параллельную данной.

фиг. 3

Знаменитость этого постулата состоит в том, что, начиная с І ст. до н.э., на протяжении 2000 лет лучшие умы мира безуспешно пытались доказать его как теорему. И вот в 1826 г. россиянин Лобачевский изложил основы своей геометрии, в которой 5й постулат геометрии Эвклида формулировался, по сути, своим отрицанием: через точку, не лежащую на данной прямой, можно провести минимум две прямые, параллельные данной.


фиг. 4

И хотя этот постулат не очень согласуется с нашими пространственными представлениями, геометрия Лобачевского непротиворечива и исправно служит физикам в последнее время. Например, геометрия Лобачевского причастна к описанию громадного ряда явлений от колебаний в механических передаточных линиях до взаимодействия элементарных частиц и процессов в мембране живой клетки.

Псевдосфера

Правда, до 1863 г., на протяжении почти 40 лет, геометрия Лобачевского воспринималась как нечто, не имеющее отношение к реальности. Но, в 1863 г. итальянский математик Бельтрами установил, что все свойства плоскости геометрии Лобачевского реализуются на поверхности псевдосферы – геометрического тела, свойства которого совпадают либо противоположны свойствам сферы. На фиг. 5 изображена псевдосфера, а на фиг. 6 ее образующая – трактриса с асимптотой X’X. При равенстве радиусов больших окружностей (параллелей) псевдосферы и сферы можно количественно сравнивать объемы и площади поверхностей их.


фиг. 5


фиг. 6

Именно в форме полупсевдосфер изготавливаются антенны нашего устройства; нами демонстрируется устройство со следующими характеристиками: КПД = 100%, дальность передачи – 1,8 м, максимальный габарит катушек антенн – 0,2 м, длина волны – 500 м, заземление не обязательно.

Здесь следует отметить, что совокупность названных характеристик демонстрационного устройства противоречит основам классической электродинамики – радиотехники.

Какие же свойства антенн-полупсевдосфер обеспечивают такие характеристики нашего устройства?

Среди более десятка экстраординарных свойств псевдосферы заслуживает внимания прежде всего следующее:

бесконечно протяженное в пространстве тело псевдосферы имеет конечный объем и конечную площадь поверхности.

Именно это свойство псевдосферы позволяет при помощи антенн-полупсевдосфер создать конечную, ограниченную в пространстве, энергетически замкнутую систему, что является необходимым условием для передачи энергии из КПД = 100%.

Вторая фундаментальная задача, которая решается в нашем устройстве, касается среды, заполняющей упомянутую энергетически замкнутую систему. Суть в том, что только в квантовой электродинамике, плодом которой являются лазеры и мазеры, среда рассматривается активной. Напротив, в классической электродинамике среда относится к пассивным объектам; с ней связывается затухание, потери электромагнитной энергии при распространении.

Невероятно, но факт, в нашем устройстве происходит активация электрического и магнитного полей Земли. Эти поля являются объектами среды в нашем устройстве, поскольку заполняют упомянутую энергетически замкнутую систему. Активизация этой среды является также следствием свойств псевдосферы.

Суть в том, что все точки на поверхности псевдосферы являются, как утверждают математики, гиперболическими, разрывными в пространстве. Применительно к антеннам-полупсевдосферам нашего устройства это равносильно разрывам, квантованию электрического и магнитного полей в каждой точке провода намотки катушек антенн-полупсевдосфер. Это ведет к электромагнитным возмущениям – волнам, длина которых соизмерима с диаметром провода намотки катушек антенн-полупсевдосфер, т.е. практически длина таких волн составляет величину порядка 1 мм и меньше. Такие электромагнитные волны, как свидетельствует теория и практика, способны, через поляризацию молекул воздуха или непосредственно, активизировать электромагнитное поле Земли и тем самым компенсировать потери электромагнитной энергии на пути передачи ее в нашем устройстве. Это также необходимо для объяснения КПД = 100%.

Мало этого, нами заявлен генератор избыточной электромагнитной энергии, коэффициент преобразования энергии (КПЭ) которого составляет величину более 400%; т.е. сравнимо из КПЭ известных тепловых насосов.

И о последней, третьей задаче, которая решается в нашем устройстве.

Общеизвестно, что энергия переносится в пространстве только бегущей электромагнитной волной, волной, в которой электрическое и магнитное поле синфазны. Это условие невозможно реализовать на расстоянии 1,8 м при длине волны 500 м. Но, общеизвестно также, что скорость движения бегущей электромагнитной волны вдоль прямолинейного или криволинейного проводника замедляется, уменьшается в сравнении со скоростью в свободном пространстве; уменьшается также длина волны. Этот эффект широко применяется в электрорадиотехнике в так называемых замедляющих системах. Уменьшение длины волны в этих системах составляет от десятых долей единицы с прямолинейными проводами до 30 единиц с криволинейными (спиральными).

Именно эффект замедления, уменьшения длины волны позволяет формировать бегущую волну на небольших расстояниях в нашем устройстве.

Действительно, длина волны нашего демонстрационного устройства уменьшается до длины упомянутой выше длины , которая и формирует бегущую, переносящую энергию электромагнитную волну в нашем устройстве. Коэффициент уменьшения волны при этом составляет величину единиц. Такое громадное уменьшение длины волны объясняет и тот экспериментальный факт, что наше устройство эффективно работает и без заземления передатчика и приемника электроэнергии.

В работе нашего устройства задействовано еще одно удивительное свойство псевдосферы:

объем псевдосферы составляет половину объема сферы, при этом площади их поверхностей равны.

Из этого свойства следует, что объем сферы, ограниченный собственной площадью поверхности, содержит два объема псевдосферы, ограниченные двумя совмещенными собственными площадями поверхности и третьей площадью упомянутой сферы. Это позволяет представить объем сферы вокруг Земли , заполненный электрическим и магнитным полями Земли, двумя объемами псевдосферы и , каждый из которых ограничен площадями и содержит половины электрического и магнитного полей Земли (фиг. 7). Учитывая этот факт и факт неизбежного нахождения нашего устройства только на одной стороне земли, утверждается что антенны нашего устройства взаимодействуют только из половинами электрического и магнитного полей Земли. При этом, не следует полагать, что вторые половины этих полей бездействуют. В этом убеждает ниже следующее.


фиг. 7

Вспомним, что большинство законов физики сформулированы для инерциальных систем отсчета, в которых время безотносительное (абсолютное), пространство изотропно, скорость прямолинейного движения электромагнитных волн (света) абсолютна и т.д. В рамках инерциальных систем отсчета общеизвестно, что в свободном пространстве при отражении бегущей электромагнитной волны образуется стоячая, в которой различаются отдельно стоячая электрическая волна и отдельно стоячая магнитная волна. При длине бегущей волны, равной , длины стоячих электрической и магнитной волн равны половине длины бегущей, т.е. . Существенно также, что период этих стоячих волн равен периоду бегущей волны, т.е. , поскольку период стоячей волны состоит из суммы двух полупериодов прямой и отраженной полуволн.

Факт вычисления, а не экспериментального определения, величины с точностью, зависящей от точности определения длительности суток на Земле, позволяет совершенно по-новому взглянуть на ряд проблем физики.

Основы беспроводной зарядки

Беспроводная передача электрической энергии (WPT) дает нам шанс избавиться от тирании кабелей питания. В настоящее время эта технология проникает во все виды устройств и систем. Давайте взглянем на нее!

Беспроводной путь

Большинство современных жилых домов и коммерческих зданий питаются от сетей переменного тока. Электростанции генерируют электричество переменного тока, которое доставляется в дома и офисы с помощью высоковольтных линий электропередачи и понижающих трансформаторов.

Электричество поступает в распределительный щит, а затем электропроводка доставляет электричество к оборудованию и устройствам, которые мы используем каждый день: светильники, кухонная техника, зарядные устройства и так далее.

Все компоненты стандартизованы. Любое устройство, рассчитанное на стандартные ток и напряжение, будет работать от любой розетки по всей стране. Хотя стандарты разных стран и различаются между собой, в конкретной электрической системе любое устройство будет работать при условии соблюдения стандартов данной системы.

Тут кабель, там кабель... Большинство наших электрических устройств обладает кабелем питания от сети переменного тока.

Технология беспроводной передачи электроэнергии

Беспроводная передача электрической энергии (WPT) позволяет подавать питание через воздушный зазор без необходимости использования электрических проводов. Беспроводная передача электроэнергии может обеспечить питание от источника переменного тока для совместимых аккумуляторов или устройств без физических разъемов и проводов. Беспроводная передача электрической энергии может обеспечить заряд мобильных телефонов и планшетных компьютеров, беспилотных летательных аппаратов, автомобилей и прочего транспортного оборудования. Она может даже сделать возможной беспроводную передачу в космосе электроэнергии, полученной от солнечных панелей.

Беспроводная передача электрической энергии начала свое быстрое развитие в области бытовой электроники, заменяя проводные зарядные устройства. На выставке CES 2017 будет показано множество устройств, использующих беспроводную передачу электроэнергии.

Однако концепция передачи электрической энергии бес проводов возникла примерно в 1890-х годах. Никола Тесла в своей лаборатории в Колорадо Спрингс мог без проводов зажечь электрическую лампочку, используя электродинамическую индукцию (используемой в резонансном трансформаторе).


Были зажжены три лампочки, размещенные на расстоянии 60 футов (18 метров) от источника питания, и демонстрация была задокументирована. У Теслы были большие планы, он надеялся, что его башня Ворденклиф , расположенная на Лонг-Айленд, будет без проводов передавать электрическую энергию через Атлантический океан. Этого никогда не произошло из-за различных проблем, в том числе, и с финансированием и сроками.

Беспроводная передача электрической энергии использует поля, создаваемые заряженными частицами, для переноса энергии через воздушный зазор между передатчиками и приемниками. Воздушный зазор закорачивается с помощью преобразования электрической энергии в форму, которая может передаваться по воздуху. Электрическая энергия преобразуется в переменное поле, передается по воздуху, и затем с помощью приемника преобразуется в пригодный для использования электрический ток. В зависимости от мощности и расстояния, электрическая энергия может эффективно передаваться через электрическое поле, магнитное поле или электромагнитные волны, такие как радиоволны, СВЧ излучение или даже свет.

В следующей таблице перечислены различные технологии беспроводной передачи электрической энергии, а также формы передачи энергии.

Технологии беспроводной передачи электрической энергии (WPT)
Технология Переносчик электрической энергии Что позволяет передавать электрическую энергию
Индуктивная связь Магнитные поля Витки провода
Резонансная индуктивная связь Магнитные поля Колебательные контуры
Емкостная связь Электрические поля Пары проводящих пластин
Магнитодинамическая связь Магнитные поля Вращение постоянных магнитов
СВЧ излучение Волны СВЧ Фазированные ряды параболических антенн
Оптическое излучение Видимый свет / инфракрасное излучение / ультрафиолетовое излучение Лазеры, фотоэлементы

Qi зарядка, открытый стандарт для беспроводной зарядки

В то время как некоторые из компаний, обещающих беспроводную передачу электрической энергии, всё еще работают над своими продуктами, уже существует стандарт Qi (произносится как «ци») зарядки, и уже доступны использующие его устройства. Консорциум беспроводной электромагнитной энергии (Wireless Power Consortium, WPC), созданный в 2008 году, разработал стандарт Qi для зарядки аккумуляторов. Данный стандарт поддерживает и индуктивные, и резонансные технологии зарядки.

При индуктивной зарядке электрическая энергия передается между катушками индуктивности в передатчике и приемнике, расположенными на близком расстоянии. Индуктивные системы требуют, чтобы катушки индуктивности находились в непосредственной близости и были выровнены друг с другом; обычно устройства находятся в непосредственном контакте с зарядной панелью. Резонансная зарядка не требует тщательного выравнивания, а зарядные устройства могут обнаружить и зарядить устройство на расстоянии до 45 мм; таким образом, резонансные зарядные устройства могут быть встроены в мебель или установлены между полками.

Наличие логотипа Qi означает, что устройство зарегистрировано и сертифицировано Консорциумом беспроводной электромагнитной энергии WPC.

В начале Qi зарядка обладала небольшой мощностью, около 5 Вт. Первые смартфоны, использующие Qi зарядку, появились в 2011 году. В 2015 году мощность Qi зарядки увеличилась до 15 Вт, что позволяет осуществлять быструю зарядку устройств.

Следующий рисунок от Texas Instruments показывает, что охватывает стандарт Qi.

Совместимость с Qi гарантировано могут обеспечить только те устройства, которые перечислены в регистрационной базе данных Qi . В настоящее время там содержится более 700 продуктов. Важно понимать, что продукты с логотипом Qi были проверены и сертифицированы; и магнитные поля, используемые этими устройствами, не вызовут проблем для таких чувствительных устройств, как мобильные телефоны или электронные паспорта. Зарегистрированные устройства будут гарантировано работать с зарегистрированными зарядными устройствами.

Физика беспроводной передачи электрической энергии

Беспроводная передача электрической энергии для бытовых устройств является новой технологией, но принципы, лежащие в ее основе, известны давно. Там, где участвуют электричество и магнетизм, по-прежнему руководствуются уравнениями Максвелла, и передатчики посылают энергию на приемники так же, как и в других формах беспроводной связи. Однако, беспроводная передача электроэнергии отличается от них основной целью, которая заключается в передаче самой энергии, а не закодированной в ней информации.

Электромагнитные поля, участвующие в беспроводной передаче электрической энергии, могут быть достаточно сильными, и поэтому необходимо принимать во внимание безопасность человека. Воздействие электромагнитного излучения может вызвать проблемы, а также существует возможность того, что поля, создаваемые передатчиками электрической энергии, могут помешать работе носимых или имплантированных медицинских устройств.

Передатчики и приемники встраиваются в устройства беспроводной передачи электрической энергии так же, как и аккумуляторы, которые будут ими заряжаться. Реальные схемы преобразования будут зависеть от используемой технологии. Кроме самой передачи электроэнергии, WPT система должна обеспечить связь между передатчиком и приемником. Это гарантирует, что приемник сможет уведомить зарядное устройство о том, что аккумулятор полностью заряжен. Связь также позволяет передатчику обнаружить и идентифицировать приемник, чтобы подстроить значение мощности, передаваемой на нагрузку, а также контролировать, например, температуру аккумулятора.

В беспроводной передаче электрической энергии имеет значение выбор концепции либо ближнего, либо дальнего поля. Технологии передачи, количество энергии, которое может быть передано, и требования к расстоянию влияют на то, будет ли система использовать излучение ближнего поля или излучение дальнего поля.

Точки, для которых расстояние от антенны значительно меньше одной длины волны, находятся в ближней зоне. Энергия в ближней зоне неизлучающая, и колебания магнитного и электрического полей не зависят друг от друга. Емкостная (электрическая) и индуктивная (магнитная) связи могут использоваться для передачи энергии к приемнику, расположенному в ближнем поле передатчика.

Точки, для которых расстояние от антенны больше примерно двух длин волны, находятся в дальней зоне (между ближней и дальней зонами существует переходная область). Энергия в дальней зоне передается в виде обычного электромагнитного излучения. Перенос энергии в дальней зоне также называют лучом энергии. Примерами передачи в дальней зоне являются системы, которые используют для передачи энергии на большие расстояния мощные лазеры или СВЧ излучение.

Где работает беспроводная передача электрической энергии (WPT)

Все технологии WPT в настоящее время находятся на стадии активных исследований, большая часть сосредоточена на максимизации эффективности передачи энергии и иследованию технологий для магнитной резонансной связи . Кроме того, самыми амбициозными являются идеи оснащения WPT системой помещений, в которых человек будет находиться, а носимые им устройства будут заряжаться автоматически.

В глобальном плане, электрические автобусы становятся нормой; планируется ввести беспроводную зарядку для культовых двухэтажных автобусов в Лондоне так же, как и у автобусных систем в Южной Корее , в штате Юта США и в Германии .

Уже была продемонстрирована экспериментальная система для беспроводного питания дронов. И, как уже упоминалось ранее, текущие исследования и разработки сосредоточены на перспективе удовлетворении некоторых энергетических потребностей Земли путем использования беспроводной передачи энергии и солнечных панелей, расположенных в космосе.

WPT работает везде!

Заключение

В то время как мечта Теслы о беспроводной передаче энергии любому потребителю еще далека от реализации, множество устройств и систем используют ту или иную форму беспроводной передачи электроэнергии прямо сейчас. От зубных щеток до мобильных телефонов, от личных автомобилей до общественного транспорта, существует множество применений беспроводной передачи электрической энергии.

В одной из предыдущих тем мы с вами рассмотрели, как знаменитый сербский ученый Никола Тесла передавал электрический при помощи своего же изобретения - резонансного генератора (катушки Теслы), а как он это делал - подробно описано . Тесле удавалось передавать ток на очень большие расстояния, но кроме метода предложенного Теслой, существует еще один - индукционный. Такой метод конечно не предназначен для дальний передач тока.

Метод индукции не нашел массового применения в науке и технике из-за очень больших потерь модулируемого тока (потерии достигают 60%), к тому же таким методом передать ток более, чем на 1 метр не возможно (теоретически конечно можно, но нет смысла из-за сильного рассеяния поля).


Устройство такой передачи очень простое - два контура, один из них подключен к генератору высокой частоты (в несколько килогерц). Подобное устройство можно легко изготовить дома, простой мультивибратор который расчитан на 20-50 килогерц подключен к усилительному каскаду, к последнему подключен контур который содержит от 10 до 100 витков, второй контур аналог первого. Самое главное в индукционном принципе передачи тока то, что у контуров отсутствует магнитный сердечник, то есть они никак не присоединены друг к другу, а ток передается по воздуху методом индукции.


На практике, как говорилось выше, данным метод применяют очень редко. Такой принцип передачи известен давно - еще со времен Майкла Фарадея (уже 200 лет). И вот в наше время корпорация Нокия решила использовать данный способ и создала концепт мобильного телефона, у которого нет порта зарядки, телефон пока не выпускают серийно, но покупателям такой мобильник точно понравится. В нем встроен приемный контур, а передающий спрятан в подставке. Работает все это очень просто - ставим телефон на поставку и телефон заряжается.


Но это далеко не все преимущества чудо-телефона. Телефон может зарядится и другим способом. Известно, что теле и радио станции модулируют радиоволны, а телефон их собирает приемником и превращает в ток которым телефон заряжается. Такой принцип, и принцип индукционной передачи тока стали использовать и другие производители мобильных телефонов и ноутбуков, и сейчас на рынке стало уже возможно найти такие чудо-устройства.

Обсудить статью ПЕРЕДАЧА ТОКА БЕЗ ПРОВОДОВ МЕТОДОМ ИНДУКЦИИ

Беспроводное электричествостало известно с 1831 года, когда Майкл Фарадей открыл явление электромагнитной индукции. Он экспериментально установил, что меняющееся магнитное поле, порождаемое электрическим током, может индуцировать электрический ток в ином проводнике. Проводились многочисленные опыты, благодаря чему появился первый электрический трансформатор. Однако полноценно воплотить идею передачи электричества на расстоянии в практическом применении удалось лишь Николе Тесла.

На Всемирной выставке в Чикаго в 1893-м году он показал беспроводную передачу электричества, зажигая фосфорные лампочки, которые отстояли друг от друга. Тесла продемонстрировал множество вариаций по передаче электричества без проводов, мечтая, что в будущем данная технология позволит людям передавать энергию в атмосфере на большие расстояния. Но в это время это изобретение ученого оказалось невостребованным. Лишь век спустя технологиями Николы Теслы заинтересовались компании Intel и Sony, а за тем и иные компании.

Как это работает

Беспроводное электричество в буквальном смысле представляет передачу электрической энергии без проводов. Часто эту технологию сравнивают с передачей информации, к примеру, с Wi-Fi, сотовыми телефонами и радио. Беспроводная электроэнергия – это сравнительно новая и динамично развивающаяся технология. Сегодня разрабатываются методы, как безопасно и эффективно передавать на расстоянии энергию без перебоев.

Технология основана на магнетизме и электромагнетизме и базируется на ряде простых принципов работы. В первую очередь это касается наличия в системе двух катушек.

  • Система состоит из передатчика и приемника, генерирующих вместе переменное магнитное поле непостоянного тока.
  • Это поле создает напряжение в катушке приемника, к примеру, для зарядки аккумулятора или питания мобильного устройства.
  • При направлении электрического тока через провод вокруг кабеля появляется круговое магнитное поле.
  • На мотке проволоки, куда не поступает электрический ток напрямую, начнет поступать электрический ток от первой катушки через магнитное поле, в том числе вторую катушку, обеспечивая индуктивную связь.
Принципы передачи

До последнего времени наиболее совершенной технологией передачи электроэнергии считалась магнитно-резонансная система CMRS, созданная в 2007 году в Массачусетском технологическом институте. Данная технология обеспечивала передачу тока на расстояние до 2,1 метра. Однако запустить ее в массовое производство мешали некоторые ограничения, к примеру, высокая частота передачи, большие размеры, сложная конфигурация катушек, а также высокая чувствительность к внешним помехам, в том числе к присутствию человека.

Однако ученые из Южной Кореи создали новый передатчик электроэнергии, который позволит передавать энергию до 5 метров. А все приборы в комнате будут питаться от единого хаба. Резонансная система из дипольных катушек DCRS способна работать до 5 метров. Система лишена целого ряда недостатков CMRS, в том числе применяются довольно компактные катушки размерами 10х20х300 см, их можно незаметно установить в стены квартиры.

Эксперимент позволил передать на частоте 20 кГц:
  1. 209 Вт на 5 м;
  2. 471 Вт на 4 м;
  3. 1403 Вт на 3 м.

Беспроводное электричество позволяет запитывать современные большие ЖК-телевизоры, требующих 40 Вт, на расстоянии 5 метров. Единственное из электросети будет «выкачиваться» 400 ватт, однако не будет никаких проводов. Электромагнитная индукция обеспечивает высокий КПД, но на малом расстоянии.

Существуют и иные технологии, которые позволяют передавать электроэнергию без проводов. Наиболее перспективными из них являются:
  • Лазерное излучение . Обеспечивает защищенность сетей, а также большую дальность действия. Однако требуется прямая видимость между приемником и передатчиком. Работающие установки, применяющие питание от лазерного луча, уже созданы. Lockheed Martin, американский производитель военной техники и самолетов, испытал беспилотный летательный аппарат Stalker, который питается от лазерного луча и остается в воздухе в течение 48 часов.
  • Микроволновое излучение . Обеспечивает большую дальность действия, но имеет высокую стоимость оборудования. В качестве передатчика электроэнергии применяется радиоантенна, которая создает микроволновое излучение. На устройстве-приемнике стоит ректенна, которая преобразует в электроток принимаемое микроволновое излучение.

Данная технология дает возможность существенного удаления приемника от передатчика, в том числе нет прямой нужды прямой видимости. Но с увеличением дальности пропорционально увеличивается себестоимость и размеры оборудования. В то же время микроволновое излучение большой мощности, создаваемое установкой, может наносить вред окружающей среде.

Особенности
  • Самая реалистичная из технологий — беспроводное электричество на основе электромагнитной индукции. Но существуют ограничения. Ведутся работы по масштабированию технологии, но здесь появляются вопросы безопасности для здоровья.
  • Технологии передачи электричества при помощи ультразвука, лазера и микроволнового излучения также будут развиваться и тоже найдут свои ниши.
  • Орбитальные спутники с громадными солнечными батареями нуждаются в ином подходе, потребуется прицельная передача электроэнергии. Здесь уместен лазер и СВЧ. На данный момент нет идеального решения, однако имеется много вариантов со своими плюсами и минусами.
  • В настоящее время крупнейшие производители телекоммуникационного оборудования объединились в консорциум беспроводной электромагнитной энергии с целью создания всемирного стандарта для беспроводных зарядных устройств, которые действуют по принципу электромагнитной индукции. Из крупных производителей поддержку стандарта QI на ряде своих моделей обеспечивают Sony, Samsung, Nokia, Motorola Mobility, LG Electronics, Huawei, HTC. В скором времени QI станет единым стандартом для любых подобных устройств. Благодаря этому можно будет создавать беспроводные зоны подзарядки гаджетов в кафе, на транспортных узлах и в иных общественных местах.

Применение

  • Микроволновый вертолет. Модель вертолета имела ректенну и поднималась на высоту 15 м.
  • Беспроводное электричество применяется для питания электрических зубных щеток. Зубная щетка имеет полную герметичность корпуса и не имеет разъемов, что позволяет избежать удара током.
  • Питание самолетов при помощи лазера.
  • В продаже появились системы беспроводной зарядки мобильных устройств, которые можно использовать повседневно. Они работают на базе электромагнитной индукции.
  • Универсальная зарядная площадка. Они позволяют питать энергией большую часть популярных моделей смартфонов, которые не оборудованы модулем для беспроводной зарядки, в том числе обычные телефоны. Кроме самой зарядной площадки будет нужно купить чехол-приемник для гаджета. Он соединяется со смартфоном через USB-порт и через него заряжается.
  • На текущий момент на мировом рынке продается свыше 150 устройств до 5 Ватт, которые поддерживают стандарт QI. В будущем появится оборудование средней мощности до 120 Ватт.
Перспективы

Сегодня ведутся работы над крупными проектами, которые будут использовать беспроводное электричество. Это питание электромобилей «по воздуху» и бытовые электросети:

  • Густая сеть автозарядных точек позволит уменьшить аккумуляторы и значительно снизить себестоимость электромобилей.
  • В каждой комнате будут устанавливаться источники питания, которые будут передавать электроэнергию аудио- и видеоаппаратуре, гаджетам и бытовым приборам, оборудованными соответствующими адаптерами.
Достоинства и недостатки
Беспроводное электричество имеет следующие преимущества:
  • Не требуются источники питания.
  • Полное отсутствие проводов.
  • Упразднение необходимости использования батарей.
  • Требуется меньше технического обслуживания.
  • Огромные перспективы.
К недостаткам также можно отнести:
  • Недостаточная проработанность технологий.
  • Ограниченность по расстоянию.
  • Магнитные поля не являются полностью безопасными для человека.
  • Высокая стоимость оборудования.