Как разогнать одноядерный процессор amd. Процессоры. Разгон процессора Intel программой SetFSB

Разгон. Что это?

Разгон – принудительная работа оборудования на повышенных частотах. Разгон процессоров непосредственно пользователем появился достаточно давно, приблизительно начиная с 486 процессоров. Уже тогда люди хотели ускорить свой компьютер без расхода средств из своего бюджета. Так как процессор был той частью компьютера, чьё быстродействие всегда измерялось в мегагерцах, целью разгона было увеличение этих самых мегагерц. Сначала процессоры не очень-то стремились дарить радость их владельцам. Виной тому то, что в те далёкие времена компьютеры стоили намного дороже, нежели теперь и производители процессоров выжимали из них всё, что только можно. Поэтому запаса частоты у них практически не было. Но время всё меняет. В нашем случае - к лучшему:) (иначе не было б этой статьи). Итак, цель данной статьи максимально помочь начинающим пользователям, и минимально помочь производителям процессоров:) …

Почему производители CPU радуют нас разгоном?

На самом деле производитель CPU не стремиться радовать пользователей, он лишь старается выжать максимальную выгоду из своих "изделий". Кроме этого есть ещё несколько пунктов по поводу возможности разгона, вот они:

Система выпуска процессоров.

К примеру: AMD Athlon XP 1500+ и 2000+ на ядре Palomino выпускаются не отдельно (то бишь: надо AMD заполнить пробел на рынке ХР 1500+ процессоров, отлично, запускаем процесс по изготовлению ХР 1500+... не всё так просто). Вот почему:

Неоднородность ядер

Современные процессоры – очень сложные устройства, которые содержат миллионы транзисторов. А как сделать так, что бы в двух 1500 процессорах было, к примеру, по 40000000 миллионов транзисторов? Никак. Обязательно в одном будет, к примеру, на 100 больше, в другом на 200 меньше. И первый будет работать чуть быстрее, а второй чуть медленнее. А количество транзисторов напрямую зависит от способности процессора разгоняться.

Как узнать производителю, на какой CPU клеить лейбл 1500ХР, а на какой 2000ХР?

Тестировать процессоры? Итак: выпущено 10000000 Athlon XP Palomino. Поставить 10000000 компьютеров с этими CPU, посадить за них 10000000 человек и дать всем установку: разгоните процессоры до максимума. Понятно, что так делать никто не будет ввиду очень больших затрат. И тут в дело вступает такая наука, как статистика. Продемонстрирую упрощённую модель: На заводе AMD выпустили 1000000 процессоров за год. В первом полугодии 400000, во втором полугодии – 600000. Из первого взяли 100, протестировали. 10 процессоров заработало как 2000ХР, 90 – как 1500ХР. Из второй: 10 – 2100ХР, 90 – 2000ХР. Маркируем первую партию как 1500ХР (отбирать из 40000 CPU 10%, работающих как 2000 - не имеет смысла). Вторую маркируем как 2000ХР по тем же причинам. А почему первая партия была меньше, и качество было хуже, я рассмотрю в следующих пунктах.

Условия тестирования

Дело в том, что на заводе процессоры тестируются в жёстких условиях (температурный режим, время тестирования и тд.), дабы они гарантированно работали на заявленных частотах. Покупая процессор, мы стараемся, наоборот, обеспечить ему хорошие условия (покупаем дорогой кулер, иногда даже оставляем корпус открытым и тд.). За это процессоры благодарят нас и работают на повышенных частотах.

Brand и "иже с ними"

Такие компьютеры мало распространены в странах СНГ из-за их высокой стоимости. Существует много корпораций, продающих готовые компьютеры в фирменных корпусах, зачастую с собственного производства мониторами, мышами, клавиатурами и тд. Среди таких компаний: Dell, Compaq, Toshiba и тд. Свои компьютеры они оснащают только качественными комплектующими. Поэтому процессоры в этих компьютерах могут стоять с намеренно пониженными частотами для наибольшей надёжности системы.

Маркетинг

Важно не только произвести качественный и быстрый процессор, но и умело расписать его достоинства. Разглашать недостатки производители почему-то не любят:). Делается всё это чтобы убедить нас купить продукт именно этой фирмы, а не какой-либо другой. Умело пользуется этим правилом компания Intel.

Не все процессоры одинаковы полезны…

Всегда есть спрос на топовые модели, но он относительно низок. Часто случается так, что процессоры с низкими частотами продаются намного лучше. Из-за этого возникает пробел на рынке. Производители стремятся его заполнить и перемаркировывают процессоры. Если этого не делать, то на складе скапливаются топовые модели. А их всё равно придётся рано или поздно продавать, притом по цене, которая заметно ниже запланируемой.

Технический процесс

На заводе во втором полугодии процессоров получилось больше и их частоты были выше. Связано это с техническим процессом, который определяет величину транзистора, измеряемую в микронах. Чем меньше эта величина, тем лучше процессор будет разгоняться. То есть в ядро одного и того же объёма можно будет поместить больше транзисторов и, следовательно, частота будет больше. А с младшими моделями поступим так: в тот же объём поместим меньшее количество транзисторов, из-за чего тепловыделение будет меньше и расположенность к разгону выше.

Потенциал

Раз процессоры одной серии производятся по одной и той же технологической линии и отличаются лишь частотами, то можно пронаблюдать такую картину: 1500MHz процессор разогнан до 1800MHz, а процессор 2000MHz разогнан до 2100MHz. Что мы видим? Лидирует по частоте конечно второй процессор, но он разогнался только на 100MHz, а первый на 300MHz, хотя по частоте он уступает. Объясняется это тем, что 2000MHz работает уже практически на пределе своих возможностей. Поэтому процессоры одной серии с наименьшей частотой разгоняются намного лучше по относительному показателю, нежели их старшие братья.

Дата выпуска

Чем позднее произведён процессор, тем он лучше приспособлен к разгону. Инженеры компаний постоянно пытаются всё лучше наладить производство, дабы обеспечить больший процент выхода годных продуктов, следовательно, уменьшить затраты. Достигается это засчёт использования более прогрессивных технологий (новая упаковка корпуса и тд.). А чем более технологически совершенен проц., тем лучше он приспособлен к нестандартным частотам.

А зачем нам этот разгон?

Разгоном занимаются из-за ряда причин, начиная от увеличения производительности, заканчивая энтузиазмом. Вот эти причины:

  • Хочу быстрее! (с) Наш пользователь
  • Хочу за меньшие деньги! (с) Наш пользователь

Сбалансированность системы

Часто случается так: купил крутую видеокарту и думал, что всё ОК. Но не тут-то было. Забыл/не знал/не помнил, что в системе остался старенький Duron 600MHz, а GeForce 4 уже лежит на столе. Процессор по своей значимости в играх (так как играми искушён почти каждый пользователь, так случается, что ради игр люди занимаются разгоном) занимает один подиум с видеокартой. Поэтому для того, чтобы хоть как-то заставить видеокарту трудится как положено, разгоняется процессор.

Азарт

И вот настал мой самый любимый пункт! Многие люди (включая меня) разгоняют всё, что только можно для азарта. Зачем процессор с частотой 2Ггц разгонять? – спросит начинающий пользователь/оверклокер. Да затем - интересно выжать максимум! (Даже если этот максимум реально не нужен) Это как рулетка: повезло – хорошо разогнался, не повезло – всё равно разогнался, но уже не намного. Ещё более добавляет адреналин то, что такими манипуляциями можно и спалить "драгоценный камень". Хотя, случаи вылета процессоров от разгона крайне редки. Просто всё надо делать с умом, а не с тупым азартом. Если всё делать правильно, то вероятность провала 0,0ХХХ%.

А вдруг он сгорит?

Как говорилось в предыдущем пункте, при правильных действиях риск крайне мал, но он есть. Вот несколько минусов разгона:

Летальный исход – процессор сгорел. Это может произойти если:

  1. При сборке забыл прикрепить кулер. Лечится просто: надо быть внимательным и перед запуском проверить систему в целом.
  2. Кулер остановился. В БИОСах большинства материнских плат есть опция: остановить систему при остановке кулера.
  3. Температура процессора зашкаливает за допустимые пределы, в один прекрасный день компьютер завис и не "ожил". Следите за температурой. Обычно она не должна превышать 60 градусов.
  4. Хотел разблокировать множитель на Athlon/Duron и после этого система не стартует. Аккуратно сотрите остатки токопроводящего лака/карандаша с процессора и, если в этом случае "ничего не начинается" (с) Масяня:), несите камень на фирму, где вы его купили по гарантии. При разговоре с менеджером надо делать невинное тупое лицо и всё время мямлить: я играл в Quake/Unreal/NFS…а он…он остановился и не работает теперь. Никаких умных словечек, на вопросы менеджера о том, доставали ли вы процессор/снимали кулер и тд. Говорить – НЕТ.
  5. Пошёл к соседу поставить на его комп свой камень, принёс домой, вставил в свой комп – не работает. См. пункт выше.
  6. Скол на ядре при неаккуратной установке кулера, но гарантия есть. Попробуйте ляпнуть на ядро термопасты так, чтобы она закрывала место скола и вперёд на фирму. Вариантов успешного результата мало, но они есть. Это лучше чем оплакивать дома умерший процессор.
  7. Отломалась ножка. Попробуйте обратиться в профессиональную мастерскую, там возможно помогут. Советую не доверять это занятие какому-нибудь соседу "Саше", якобы умеющему обращаться с паяльником - понесёте процессор в мастерскую с пятью поломанными ногами.

Срок эксплуатации

Процессоры рассчитаны примерно на 10-15 лет непрерывной работы. Своими действиями вы можете сократить срок их службы до 5-10 лет. Но через это время ваш процессор будет стоить пару банок пива:).

Экстремальный разгон

Занятие для бесстрашных людей. Я к таковым не отношусь, следовательно, такими вещами не занимаюсь (описывать в этой статье не буду, так как она рассчитана на начинающих и продвинутых пользователей, которым лучше не браться за это занятие. А опытные оверклокеры вряд ли нашли бы что-нибудь новое в моих познаниях об экстремальном разгоне) и вам не советую. Но если вам всё же неймётся, то можете попробовать. Отмечу лишь то, что шансы умереть у процессора резко увеличиваются.

Производитель и разгон

Производители отрицательно относятся к разгону, но есть и некоторые исключения (почему AMD не заблокирует коэффициент "намертво"?).

Целесообразность

Что я получу от разгона, если у меня ХХХМВ память, GeForce X видеокарта и тд.? Разгонять процессор целесообразно во всех случаях (за исключением подобных ситуаций: вы геймер, у вас 3GHz CPU\TNT2 M64\64Mb RAM). Вопрос в том, какие отрицательные моменты может принести разгон?

  • При разгоне с помощью FSB греется больше не только процессор, но и все компоненты системы. Поэтому сбоить может практически всё (память, винчестер, SCSI-плата, даже блок питания).
  • Проблема определить: что именно сбоит? Чаще всего: память или CPU.
  • После нескольких часов работы компьютер виснет. Практически всегда это случается из-за перегрева. Нужен более качественный кулер.
  • После покупки более "навороченного" кулера, корпус будет издавать гораздо больший шум.
  • Иногда: ощущение страха. А вдруг сгорит?

Оптимизация

Зачастую после оптимизации памяти (выставлением более низких таймингов в БИОСе, настройка ОС и тд.), разгона и оптимизации видеокарты можно получить бо льшую прибавку производительности, нежели от разгона процессора.

Free RAM

Если у вас мало рамы и ваш tray в Windows представляет нечто, наподобие: AVP Monitor, ICQ, PowerStrip, Chat, CPUCool, Winzip, Windows Messager и тд., то есть смысл что-нибудь выгрузить, так как эти программы занимают драгоценное место в оперативной памяти.

Main board

Обновите БИОС. Возможно, в нём появились настройки, ранее не доступные. Обычно производители не любят говорить о каких-то конкретных изменениях в версиях БИОСов, поэтому обычно приходится проверять самому. P.S. Цель написания данной статьи: помочь пользователю получить "халявные" мегагерцы, а не рассказать про настройки БИОСа под заглавием: "Поставьте в нём пару Enabled и 2Т и всё заработает в 2 раза быстрее". Это вопрос отдельной статьи.

Опции ОС

Существует возможность настройки производительности почти каждой ОС. Поэтому можно просто переустановить или настроить ОС. Прирост производительности может быть значительным (в зависимости от состояния запущенности ОС:)).

Разгон видеокарты

Этот пункт адресован любителям поиграть в 3D игры. Для таких пользователей разгон видеокарты может дать такой же прирост, как и от разгона процессора. "Как и что" делать, прекрасно написано в статье "FAQ по разгону видеокарт" (за что большое спасибо моему тёзке Алексею Ф. ака fin:)).

Оптимизация видео

Существует возможность оптимизации видеокарты. Делается это с помощью настроек в драйверах.

Подготовка к разгону или доведение до ума.

Для этого понадобится наждачная бумага мелкой зернистости, армейская паста ГОИ, кусок хлопбум:) ткани и термопаста. Делается это примерно так: Распаковываем свежекупленный кулер. Если на его основании может быть наклеена фольга или какая-то вязкость, похожая на жвачку, смело отдираем их. Смотрим на то место, где ядро должно соприкасаться с основанием радиатора: на нём не должно быть следов клея. Далее берём наждачку и полируем основание радиатора (в некоторых статьях авторы рекомендуют также полировать поверхность ядра процессора… я настоятельно не рекомендую это делать) так, чтобы оно было ровным. Идеальной поверхности добиться не удастся. Тут нам на помощь призвана придти паста ГОИ (в армии используется не для полировки радиаторов:)). Натираем об неё кусочек ткани и полируем то самое основание. Когда работа будет закончена, вы сможете увидеть на радиаторе отражение своего довольного лица:).

Далее берём термопасту совдеповского производства КПТ-8 (пасты на основе серебра и тд. использовать не рекомендую: во-первых потому, что КПТ-8 прекрасно справляется со своей задачей за меньшие деньги, во-вторых потому, что при использовании паст на основе проводников существует риск что-нибудь закоротить) и наносим её на ядро процессора. Опасаться перебора не стоит, так как при установке кулера остатки пасты выдавятся, достаточно всего лишь чуть подвигать радиатор из стороны в сторону.

Как мне разогнать свой процессор?

Разгон процессора зависит не только от самого процессора, но и от конкретного железа в системе. Я возьму тот случай, когда все компоненты системы прекрасно приспособлены к разгону:

С помощью изменения частоты FSB

Наиболее популярный вариант разгона, доступный практически каждому. Формула расчёта тактовой частоты процессора: FSB x Multiplier=Clock Frequency. В БИОСе материнской платы или при помощи DIP переключателей (раньше были перемычки. То же, что и DIP, только устройство попроще:)) устанавливается нужная вам частота FSB, умножаемая на "множитель" и получается частота процессора. Увеличиваем частоту FSB на 5MHz, запускаем комп, пару раз прогоняем 3D Mark2001 или что-нибудь в этом духе. Если всё прошло ОК, повторяем процедуру… доходим до того момента, когда система загружается, но через пару минут начинает работать нестабильно (fatal error, 3D Mark вылетает, появляются непонятные ошибки системы и тд.). Настало время отодвинуться на 5MHz назад. Тестируем систему в течение нескольких часов на наличие перегрева (можно и больше, но после нескольких часов 3D Mark, CPUBurn и тд. и так станет всё понятно.). Если все тесты пройдены – процессор разогнан. Осталось подкорректировать частоту, добавляя по 1 MHz к FSB и тестируя так, как описано выше. Разгон с помощью FSB даёт бо льшую прибавку производительности (так как разгоняются почти все компоненты системы, в частности наибольшую прибавку из этих "всех" даёт RAM), нежели с помощью множителя.

С помощью множителя (multiplier)

Практически все современные процессоры, за исключением AMD Duron/Athlon (не беру в расчёт старые процессоры и Athlon под Slot A), не имеют возможности изменять множитель. Первоначально Duron/Athlon не мог изменять коэффициент, однако после того, как умные люди разгадали секрет AMD, всё стало веселее:). У разных модификаций этих процессоров multiplier разблокируется по-разному. Вот инструкции по разблокировке:

AMD Athlon (Thunderbird), Duron (Spitfire)

Эти процессоры разблокировались без особых напрягов. Достаточно было соединить простым карандашом (графит пропускает ток, но имеет большое сопротивление, которое, впрочем, не такое уж большое для этой процедуры:)) мостики L1, заклеить всё это дело скотчем (графит имеет свойство со временем осыпаться) и процессор готов к употреблению:).

AMD Athlon XP (Palomino), Duron (Morgan)

Здесь дело обстоит намного сложнее. Ещё раз напомню: если вы не уверены в том, что у вас всё получится, НЕ ДЕЛАЙТЕ ЭТОГО. Итак, приступим:

Средства и инструменты

Итак, как же сделать так, чтобы ваш камень Athlon XP работал не на той частоте, которая дана ему, так сказать, свыше, а на более высокой, и при этом не дать процессору потерять лицо, то есть товарный вид?

Сделать это сложнее, чем в случае с AMD Athlon Thunderbird, мостики на котором замыкались обычным простым карандашом, но все равно возможно. Для этого нам понадобятся: острый нож, наподобие канцелярского или хирургического, качественный прозрачный скотч, какой-нибудь быстротвердеющий клей, не проводящий ток (сойдет так называемый суперклей, который есть на любом блошином лотке), тюбик проводящего ток клея "Контактол", который можно купить в любом приличном магазине автозапчастей, увеличительное стекло (aka лупа) и 40-45 минут свободного от дел и забот времени.

Крайне желательно также наличие мультиметра или тестера. Суперклей вполне можно заменить на любой другой клей, важно только, чтобы он быстро менял агрегатное состояние, то есть становился твердым - мы же не хотим просидеть над процессором 24 часа?

Вместо клея "Контактол" вполне можно использовать любое другое хорошо проводящее ток, смываемое растворителем и достаточно клейкое вещество - например, цапонлак c металлическим наполнителем, который продается в любом уважающем себя магазине, торгующем всякими умными радиодеталями.

Расплавленный припой недопустим: результата вы, конечно, добьетесь, но вот товарный вид процессора потеряете точно.

Безусловно, помимо, так сказать, приобретаемых ресурсов, нам понадобятся еще и некоторые врожденные и благоприобретенные человеческие качества. Какие? Да самые простые: прямые руки, такая же голова, причем желательно находящаяся не где-либо, а на собственных плечах. Не принимайте алкоголь перед тем, как соберетесь свершить со своим процессором описанные тут непотребства - все может плохо кончиться и для него, и для вас. Движения, выполняемые вами, должны быть четкими, быстрыми и уверенными.

Меняем множитель

Итак, мостики L1 никуда не делись. И даже расположены они на XP в том же месте, что и у Thunderbird. Но посмотрите на эти мостики внимательно: между двумя точками, которые, собственно, нам и надо соединить, есть малозаметная такая канавка, в которой, при дальнейшей игре в гляделки, вполне можно увидеть тонкое медное напыление.

Если вы все же попробуете замкнуть мостики карандашом или припоем, то неизбежно не только соедините их между собой, но и замкнете на ту самую медную подложку. Результат будет довольно невеселый: процессор откажется заводиться, и вернуть его к жизни будет весьма сложно.

Как вы уже поняли, наша задача - замкнуть мостики L1, не "заземлив" их при этом на медное напыление. Для этого надо просто заполнить канавки диэлектриком, коим в нашем случае является суперклей или его заменитель. Делать это, несмотря на кажущуюся простоту задачи, надо весьма и весьма аккуратно - ведь диэлектрик не должен попасть на контактные площадки мостиков, но вот канавку надо заполнить по самое некуда - для лучшей изоляции.

Мы должны локализовать канавки с помощью скотча, что мы, собственно, и сделаем. Очистите поверхность подложки процессора с помощью спирта или одеколона. (Только не глотнув и выдохнув на подложку тонким слоем)

Затем наклейте две полоски скотча шириной около 1 см, каждая вдоль мостиков - так, чтобы они закрывали собой контактные площадки, а вот канавки не затрагивали. Ширина получившейся щели не должна превышать 1-2 мм. Если резиновая ножка на подложке вам мешает, оторвите или срежьте ее. После этого еще двумя полосами скотча примерно той же ширины окончательно локализуйте место нанесения клея - иными словами, наклейте их перпендикулярно уже наклеенным полоскам так, чтобы открытыми оставались только канавки мостиков L1, и ничего больше.

Крайне важно, чтобы скотч, используемый вами, имел хорошую прилипчивость и не имел дурной привычки вздуваться где попало. Клеить его на подложку надо плотно, чтобы по шву никаких вздутий не оставалось, - в противном случае в такое вздутие сможет протечь клей, закрыв контактную площадку и загробив тем самым весь первый этап операции "Ъ".

Если вы все сделали правильно, то после высыхания клея и отдирания скотча вы увидите ровненький (или не очень) бугорок клея, лежащий точно поверх тех самых злополучных канавок. Нам этот холмик, кстати, совершенно не нужен: наносить поверх тонкого, неровного и рассыпающегося бугорка из клея нормальные ровные дорожки проводника - занятие куда более неблагодарное, чем делание того же самого, но на гладкой поверхности подложки.

Поэтому берем в руки скальпель и аккуратно, ведя лезвие параллельно подложке и почти касаясь ее, срезаем остатки клея. При этом важно не прикладывать чрезмерных усилий к ножу - можно поцарапать подложку или, например, выковырять диэлектрик из канавки. Также важно, чтобы нож был действительно острый, а не который вы уже год как обещаете подточить, и даже хлеб под ним не режется, а ломается.

Все, можно открыть глаза. Что мы видим? А видим мы идиллическую картину - ровная, чистая поверхность подложки и аккуратно заполненные диэлектриком ненавистные нам канавки. Если мы видим что-то иное - значит, мы что-то делали не так и это "не так" надо немедленно переделать.

Но даже после получения идеально ровной поверхности нельзя применять карандаш - сопротивление графита слишком велико и процессор все равно не будет работать так, как нам хочется. Не оправдано и применение остро заточенного припоя - все же клей, даже затвердевший, имеет свойство крошиться и царапаться, так что ровной дорожки вы все равно не получите. Вот тут-то нам и пригодится наш жидкий проводник: с его помощью, а также с помощью уже сослужившего нам службу скотча мы сможем выполнить ровные и надежные дорожки между контактными площадками.

Опять отрезаем от мотка липкой ленты две полосы шириной около 1 см каждая. Опять наклеиваем их вдоль площадок, но теперь уже оставляем открытыми и их тоже. Затем перпендикулярно этим полосам наклеиваем еще два кусочка скотча таким образом, чтобы открытым остался только первый мостик из пяти. То есть открытым остается только малюсенький прямоугольник.

Если на предыдущем этапе я советовал вам клеить скотч плотно, то тут я вам НАСТОЯТЕЛЬНО РЕКОМЕНДУЮ клеить его ОЧЕНЬ ПЛОТНО - проводник не диэлектрик, его протечка гораздо более опасна, ненужное замыкание может стоить вам процессора.

Наклеили? Теперь глубоко вздохните и каким-нибудь тонким инструментом нанесите на открытый прямоугольник слой проводника. Жалеть его не нужно, переливать - тоже. Вы должны нанести добротный слой, но не каплю - она нам совершенно ни к чему.

Можно выдохнуть. Пока проходит помутнение в глазах, вызванное недостатком кислорода в крови, положите все инструменты на место и ничего больше не трогайте до полного высыхания клея или лака. Подчеркиваю - полного высыхания! То есть такого состояния проводника, когда на него можно будет наклеивать скотч, не боясь того, что от неосторожного нажатия клей расплывется. После того, как сие знаменательное событие произошло, смело отдирайте и выбрасывайте скотч.

И повторяйте процедуру для второго, третьего и так далее мостиков. Самое главное на этом этапе - не допустить какого-либо замыкания мостиков между собой. Конечно, можно потом удалить маленькую "козу" скальпелем, но велик риск поцарапать подложку. Результат обработки всех мостиков - разблокировка множителя процессора. Внимательно осмотрите мостики, лучше под лупой, дабы убедиться, что между ними действительно нет никаких ненужных контактов. После этого крайне желательно померить сопротивление получившихся дорожек, а также прозвонить их на предмет контакта друг с другом.

Вот тут-то нам и пригодится мультиметр. Не прикладывая к щупу никаких усилий, поставьте его на первый мостик и коснитесь вторым щупом другого конца этого же моста. Сопротивление должно приближаться к 0. Если это не так, значит, мостик не наведен - повторите процедуру нанесения проводника. Если же так оно и есть - последовательно коснитесь вторым щупом всех остальных мостов L1. Если на каком-либо измерении вы получите почти нулевое сопротивление между щупами, ищите короткое замыкание.

Если же такого не произошло, переходите к следующему мостику.

Все тесты пройдены успешно? Отлично, теперь один щуп прижмите к маленькой контактной площадке над надписью "Assembled in...", а вторым последовательно пройдите все только что созданные мосты. Сопротивление должно отличаться от нуля во всех случаях. Площадка, к которой прижат первый щуп, очевидно, имеет прямой электрический контакт с медным напылением, и данный тест проверяет надежность нашей клеевой изоляции.

Если где-то имеется пробой - придется разрушать только что наведенный мост, повторно заливать канавку клеем и затем снова восстанавливать разрушенное.

Итак, всё сделано и можно приступать к разгону.

P.S. Будьте предельно осторожны с разлочкой "коричневых" атлонов. Однажды после такой процедуры атлон разогнался до частоты 0Мгц:(. Притом никаких следов того, что проц сгорел, не было, также не было "нечаянно замкнутых мостиков", обращение с процессором было предельно аккуратное. Чтобы заставить подонка работать, я удалил проводящий лак, но это тоже не помогло. Вот и думай после этого: что я сделал не так? У "зелёного" атлона я замыкал между собой все мостики L1, после чего процессор просто не стартовал. При удалении лака всё работало.

AMD Athlon (Thoroughbred)

При выходе процессора на ядре Thorobred AMD пошла навстречу оверклокерам, во-первых, оставила на некоторых моделях не заблокированный множитель (на тех у которых заводской множитель до 12.5), но и остальные разблокировать не составляет особого труда. Во-вторых, сделала хорошо разгоняемый процессор (а это радует). Ну, давайте разберемся, как же разлочить торобред с коэффициентом умножения выше 12.5. А это очень легко, нужно всего лишь замкнуть 5-й мостик группы L3, это возможно сделать двумя способами:

а) Уже традиционный способ: соединить две точки 5-го мостика группы L3 токопроводящим лаком, предварительно заклеив скотчем, либо суперклеем прорезь между точками, и процессор разлочен.

РИС.1 б) Этот способ еще проще: нужно всего-навсего замкнуть две ножки процессора AJ27 и AH28 тоненькой проволокой (рис.2), результат один и тот же. (Про ножки подробней ниже).

РИС.2

При разлочке процессора этими способами можно будет выставлять различные (до 12.5 включительно) множители посредством материнской платы, если в последней есть такая функция. Но что же делать, если такой функции нет, или нужно выставить множитель выше 12.5, то такой способ уже не эффективен. Как это сделать читайте ниже.

Выставлять различные множители от 5 до 18.5 можно выставлением различных комбинаций (open, closed) 5-и мостиков L3. Например, у вас торобред 1700+ его родной множитель 11 положение всех мостиков closed (они все замкнуты), а нам нужно поставить множитель 13 для этого необходимо разрезать 3-й и 5-й мостики группы L3, а для того, чтобы вернуть множитель 11 нам их нужно замазать токопроводящим лаком.

Подробней о комбинациях мостиков L3:

РИС.3

Резать мостики нужно двумя батарейками по 1.5 вольта, один контакт на одну из точек мостика, а второй нужно подсоединить к иголке и водить между точек и мостик разрежется. Однако мостики можно и не резать, а просто изолировать определенные ножки процессора которые связаны с верхними точками мостиков L3.

Делается это так - вытягивается из сетевого кабеля (витая пара UTP) проводок, из изоляции вытаскивается провод и эту (можно какую другую) изоляцию натягиваем на ноги - при этом надо совсем чуть-чуть рассверлить (вручную) дырки на подвижной части сокета, чтобы потом при вынимании проца изоляция там не оставалась:

Мостики L3

Ножки процессора

Изолирование этих ног процессора будет равноценно перерезанию мостиков L3. Также с помощью этих же ног можно и восстановить ранее разрезанные мостики L3. Всего лишь нужно подвести сигнал GND на ножку, соответствующую верхней точке мостика L3 – это будет равноценно замыканию мостика:

РИС.5

Обеспечение стабильности при разгоне.

Напряжение

Напряжение возможно повышать/понижать на CPU, RAM, AGP, IO. Обычно поднятие напряжения на процессор даёт больше стабильности, с его помощью можно получить более высокие результаты разгона. Правда при поднятии напряжения на CPU/RAM/NorthBridge, они начинают больше греться. Для этого необходимо обеспечить хорошее охлаждение. С обзором кулеров для процессоров можно ознакомиться практически на любом железячном сайте. Кулер на чипсете мат. Платы желательно заменить, к примеру, на кулер от Pentium I. Памяти достаточно будет прикреплённых к её чипам радиаторов. Сделать их можно распилом радиатора от старой мат. платы или процессора. Затем приклеить термоклеем (не суперклеем!), который можно купить на любом радиорынке.

РИС. 6

Рекомендую повышать напряжение максимум на 15% от номинала. Выше – не безопасно! С разгоном CPU необходимо поднять напряжение на память, так как большинство мат. Плат работают в синхронном режиме FSB/RAM. Поднимать напряжение на AGP нет необходимости, так как современные видеокарты могут работать на частотах AGP, намного больше номинальных. Эта опция актуальна для владельцев видеокарт компании Matrox, чьи продукты издавна славятся своей нелюбовью к разгону. Напряжение на IO (Input/Output) можно поднять для повышения общей стабильности системы.

Соотношение FSB/PCI/AGP

Для того, чтобы при разгоне не страдало другое оборудование (винчестер, PCI устройства, видеокарта и тд.), были придуманы делители. К примеру: Intel Celeron I работает на 66MHz FSB, при синхронном режиме частота PCI/AGP составит также 66MHz. У AGP номинальная частота 66MHz, а вот у PCI – 33MHz. При повышении частоты в 2 раза винчестер вообще откажется работать. Табличка, показывающая зависимость частот PCI/AGP от частот FSB:

Из этой таблички видно, что существуют делители FSB/PCI/AGP: 1:2:1; 1:3:2/3; 1:4:2; 1:5:2/5; 1:6:3. При этом мат. плата с поддержкой делителя, к примеру, 1:6:3, имеет набор предыдущих делителей. Притом может выбирать нужный в зависимости от частоты FSB, а вот понижать номинальные частоты для PCI/AGP мат. платы не умеют (к примеру: плата Intel 815 при частоте FSB 95MHz выберет делитель 1:2:1, а не 1:3:2/3.

Вывод: при разгоне лучше использовать официально поддерживаемые частоты (см. таблицу выше). То есть: у вас AMD Athlon XP, работающий на 133Мгц FSB. Уговорить его работать на 166Мгц (при наличии мат. платы с делителем 1:5:2/5) будет проще, чем на 159Мгц.

Охлаждение

Как вы уже догадались: для эффективного разгона необходим хороший кулер. Помните: с помощью кулера охлаждается не только процессор, поэтому необходимо обеспечить качественное охлаждение практически всем компонентам.

Конструкция корпуса

Лучше выбирать корпуса с горизонтальным расположением блока питания (расположен он так, чтобы свободно пропускать воздух к кулеру процессора), к счастью такая конструкция присутствует практически во всех последних корпусах.

Описания процессоров

Вот то, что многие начинающие оверклокеры очень хотят узнать. Описание процессоров, возможности разгона и тд.:

AMD Duron (Spitfire/Morgan(Duron XP)):

Частоты: От 600 до 900MHz для Spitfire и от 900 до 1300MHz для Duron XP

Morgan является урезанным Athlon`ом ХР (урезан, как всегда, кэш второго уровня и FSB=100MHz, а не 133).

Технические характеристики:

Технология 0,18; 0,13 мкм, напряжение ядра 1,6-1,7В, рассеиваемая мощность от 26 до 45Вт – Spitfire, от 46 до 57Вт - Morgan, оба ядра включают в себя около 25млн. транзисторов. Шина у обоих 100х2=200MHz, реальная частота 100MHz, просто данные передаются по обоим фронтам сигнала. Пропускная способность шины 1,6 Гб/с. Кэш первого уровня – 128кб (64кб на данные и 64кб на инструкции), кэш второго – 64кб. Оба кэша хранят данные, которые между собой не пересекаются и дополняют друг друга, так что эффективный объём равняется 192кб. Благодаря такой системе кэширования, процессорам AMD удаётся быть быстрее аналогичных процессоров Intel.

Упаковка:) :

Разъём – Socket-462 (Socket – A). Изготавливается Socket-A-PGA462. Кристалл процессора вынесен на поверхность для лучшего охлаждения. Процессор достаточно хрупок, поэтому будьте осторожны при установке кулера, для этого по краям установлены четыре прокладки, смягчающие нагрузку. Покупая процессор, проверьте ядро на сколы (обычно по краям кристалла), чтобы не пришлось проделывать процедуру возврата по гарантии сразу же после покупки. В процессоры серии Athlon XP/Duron XP встроен термодатчик, позволяющий наиболее точно снимать данные о температуре процессора. Правда только самые последние боарды поддерживают эту функцию.

Наборы команд:

Spitfire: MMX расширенный (+19 доп. Инструкций) и Enhanced 3DNow!, с 5-ю доп. инструкциями. Используется 3 суперскалярных полностью конвейеризованных блока вычислений с плавающей точкой с возможностью изменения последовательности выполнения команд и 3 суперскалярных полностью конвейеризованных блока адресных вычислений возможностью изменения последовательности выполнения команд. Это позволяет добиться впечатляющего быстродействия в приложениях, использующих в большом объёме сложные математические и геометрические вычисления, в частности, в играх.

Morgan: Те же инструкции, что и в Spitfire+3DNow!Professional, который включает в себя 107 SIMD инструкций, что на 52 больше чем в 3DNow! Enhanced. Благодаря этому новшеству набор команд 3DNow! Professional совместим с набором команд SSE, использующихся в процессорах Intel. Также изменения постигли механизм предсказания используемых инструкций, благодаря чему новое ядро пытается заблаговременно загружать в кэш процессора инструкции, которые могут потребоваться при дальнейших вычислениях. Благодаря такой технологии удаётся сократить количество холостых тактов процессора, связанных с ожиданием поступления необходимых данных из оперативной памяти. Использование увеличенного буфера быстрого преобразования адреса (TLB-буфер), ответственного за кэширование данных основной памяти.

Быстродействие:

Процессор опережает: Intel Celeron Mendocino (20-30%), Coppermine (10-20%). Отстаёт от: Intel Pentium III (3-5%), Intel Pentium III Tualatin (10-20%), Intel Celeron Tualatin (5-15%), AMD Athlon/XP (5-20%). Разница между Spitfire и Morgan примерно 2-5%. С ростом коэффициента процессоров Duron увеличивается отставание от Athlon из-за меньшего объёма кэша. Разница в процентах зависит от частот системной шины, типа используемой памяти, тестовых приложений.

Разгон:

Хорошо поддаются разгону младшие процессоры с частотами 600-650, однако они уже сняты с производства и найти их в продаже весьма сложно. Они обычно разгоняются вплоть до 1Ггц. Потолком их частоты является примерно 1100Мгц (из-за 0.18мкм технологии). Поэтому старшие модели разгоняются плохо. Новые модели процессоров на ядре Morgan, выпущенные по технологии 0.13мкм разгоняются достаточно хорошо. Разгон зависит от объёма кэш-памяти (чем меньше – тем лучше для разгона), а на Duron её всего 64кб. Для разгона необходимо позаботиться о хорошем охлаждении, так как тепловыделение этих процессоров оставляет желать лучшего.

Плюсы:

  1. Достаточно высокое быстродействие.
  2. Самая низкая цена среди конкурентов.

Минусы:

  1. Сильный нагрев при работе.
  2. Достаточно хрупок.

Невысокие тактовые частоты (не считаю минусом, так как процессор позиционируется для недорогих офисных и домашних компьютеров).

Резюме: Отличный процессор для дома и офиса. Отличное соотношение цена/производительность.

AMD Athlon (Thunderbird/Palomino/Thoroughbred)

Thunderbird: От 700 до 1300 на 100Мгц FSB и от 1000 до 1400 на 133Мгц FSB

Palomino: От 1333 до 2000Мгц (от 1500ХР до 2400ХР) на 133Мгц FSB

Thoroughbred: От 1466 до 2167Мгц (от 1700ХР до 2700ХР) на 133Мгц FSB

Технические характеристики:

Thunderbird: Те же, что и у Duron Spitfire, за исключением: FSB 100 и 133Мгц. Кэш-память второго уровня (L2) - 256кб. Рассеиваемая мощность от 50 до 90Вт.

Palomino: 37.5 млн. транзисторов, 0.18мкм, рассеиваемая мощность от 60 до 90Вт. Остальное как у Thunderbird.

Thoroughbred: 0.13мкм, рассеиваемая мощность от 60 до 90Вт. Остальное как у Thunderbird.

Упаковка:

Thunderbird: Та же, что и у Duron Spitfire. Только корпус окрашен в кофейный цвет. Ранние версии процессоров, выпускавшиеся под Slot A, были в корпусах SECC2.

Palomino: Та же, что и у Duron. Только производятся в пластиковых Socket-A-OPGA462 (Organic pin grid array) коричневого или зелёного (последние модели) цвета, благодаря чему процессор стал немного ниже.

Thoroughbred: Та же, что и у Athlon XP. Только уменьшилась площадь кристалла и он стал прямоугольной формы.

Наборы команд: Thunderbird: Та же, что и у Duron Spitfire.

Palomino: Та же, что и у Duron XP.

Thoroughbred: Та же, что и у Athlon XP.

Быстродействие:

Thunderbird: Процессор опережает: Duron, Intel Celeron, Intel Pentium III, Intel Pentium 4(есть несколько приложений, например, WinRAR и Quake3, где P4 немного опережает). Отстаёт от: Athlon Palomino/Thoroughbred, AMD Athlon Barton. Наравне с Intel Pentium III Tualatin (Зависит от типа используемой памяти и приложений).

Palomino: Процессор опережает: AMD Duron, AMD Athlon Thunderbird, Intel Celeron, Intel Pentium III, Intel Pentium III Tualatin, Intel Pentium 4. Отстаёт: AMD Athlon Barton. Thoroughbred: То же, что и у Athlon Palomino. Разница зависит от частот системной шины, типа используемой памяти, тестовых приложений. Данные получены при равных частотах.

Разгон: Thunderbird: Разгоняется хуже (из-за большего объёма кэша), чем Duron Spitfire. Только потолок частот примерно 1500Мгц. Остальное как у Duron Spitfire.

Palomino: Первые версии в коричневых корпусах разгоняются плохо. Версии в зелёных корпусах разгоняются хорошо (связано, скорее всего, с технологическими нормами). Лучше всех разгоняются зелёные камни с маркировкой 1500ХР и 1600ХР. Обычно при хорошем охлаждении удаётся выставить коэффициент 12.5 и сделать их 2000ХР или посадить оных на 166Мгц FSB. Последнее даёт большую прибавку производительности. На некоторых мат. платах (KT333, KT400 и др.) можно выставлять асинхронный режим работы FSB и памяти, но это даёт мизерный прирост производительности. Потолок частот примерно 2Ггц.

Thoroughbred: За счёт 0.13мкм технологии процессоры младших рейтингов разгоняются просто круто. Камень 1700ХР (1466Мгц) является королём разгона. Заслуженные оверклокеры РФ:) на сайте www.. Достаточно много процессоров гонится до рейтинга 2700ХР. Потолок примерно 2.4Ггц.

Плюсы:

  1. Отличное соотношение цена/производительность.
  2. Хорошие возможности разгона (для Athlon XP).

Минусы:

  1. Сильный нагрев при работе.
  2. Большая потребляемая мощность (требовательность к блоку питания).

Резюме: Отличный процессор для домашних/профессиональных/игровых/видео/графических систем.

AMD Athlon XP (Barton)

Частоты: от 1833 до 2167+MHz

Технические характеристики:

Используется 166(333)MHz FSB. Кэш L1 – 128kb, L2 – 512kb (на частоте процессора). Технология: 0.13мкм. Напряжение: 1.65В, тепловыделение: 55 – 74 Вт.

Упаковка:

Разъём – Socket-462 (Socket – A). Изготавливается Socket-A-PGA462. Кристалл процессора вынесен на поверхность для лучшего охлаждения. По краям установлены четыре прокладки, смягчающие нагрузку. Кристалл процессора имеет прямоугольную форму (большие рёбра имеют большую длину, чем у Thoroughbred). В процессоры встроен термодатчик, позволяющий наиболее точно снимать данные о температуре процессора. Правда только самые последние боарды поддерживают эту функцию. Barton поддерживает достаточно большое количество материнских плат на самых разных чипсетах (иногда даже те, которые официально не поддерживают 166MHz FSB). Со списком можно ознакомиться в конце статьи.

Наборы команд:

Многие надеялись на добавление в ядро Barton набора инструкций SSE2, но, к сожалению, этого не произошло. Процессор поддерживает всё тот же "джентльменский набор": 3DNow! Pro, MMX, SSE.

Быстродействие:

К сожалению кэш L2 512кб не даёт желаемый прирост быстродействия (примерно 5-10% в сравнении с Thoroughbred). Да и цена на процессоры пока оставляет желать лучшего, но всё равно Barton лидер по быстродействию на сегодняшний день. Обгоняет: Всех. Отстаёт: Нет.

Разгон:

Несмотря на вдвое увеличенный объём кэш-памяти, процессор довольно неплохо разгоняется (греется, правда, как сковородка). Примерный разгон сопоставим с Athlon Palomino. Правда для этого необходимо иметь современную мат. плату. Пока к наилучшим "изделиям" для этих целей относятся только nVidia nForce2 и VIA KT400A CE, так как способны стабильно работать на частотах FSB выше 200MHz.

Плюсы: Лидер по быстродействию.

Минусы:

  1. Достаточно высокая цена (на момент выхода)
  2. Сильный нагрев при работе.
  3. Необходима мат. плата, корректно работающая с 166MHz FSB.
  4. Требуется качественный и мощный блок питания.

Резюме: Процессор найдёт своё применение в высокопроизводительных компьютерах класса Hi-end. На данный момент мало подходит для домашнего игрового компьютера из-за высокой цены.

Intel Celeron I (Mendocino)

Частоты: от 300 до 533Мгц.

Технические характеристики:

Используется 66Мгц FSB. Кэш L1 – 32kb (по 16кб на инструкции и данные), кэш L2 – 128kb интегрирован в ядро и работает на тактовой частоте процессора (первые версии Celeron (от 266 до 333Мгц) для Slot1 кэша L2 не имели, а их производительность была достаточно низка). Технология: 0.25 мкм. Напряжение: 2В, рассеиваемая мощность: 18 - 30 Вт. Упаковка:

Корпус PPGA с крышкой, защищающий кристалл от повреждений. Разъём Socket-370. Некоторые младшие модели были выпущены в Slot1 исполнении. Если у вас мат. плата под Slot1, то процессоры под Socket-370 могут быть установлены при наличии специального переходника Slot1->F-PGA или FC-PGA.

Наборы команд:

Имеет два модуля ММХ, конвейерный блок вычислений с плавающей точкой (благодаря которому оказывался в играх быстрее чем аналогичные модели AMD K6/K6-2). Поддерживает выполнение команд с изменением последовательности выполнения.

Быстродействие:

Имеет низкое по сегодняшним меркам быстродействие (66Мгц FSB, малый размер кэша, нет поддержки SSE). Такой процессор как нельзя лучше подходит для офисных ПК. Отстаёт: от всех остальных, рассматриваемых в этой статье. Обгоняет: AMD K6/K6-2 (30-40%), VIA/Cyrix (40-50%) в играх. Наравне с AMD K6/K6-2 в офисных приложениях.

Разгон:

266 MHz Celeron без кеша L2 практически всегда разгонялся до 400Мгц (100Мгц FSB). Младшие модели CeleronA (300, 333MHz) обычно разгонялись до 400-450Мгц. Иногда удавалось, с поднятием напряжения на 0.2-0.3В, заставить работать 400Мгц Celeron на 100Мгц FSB (600MHz). Потолок у Celeron I – 600MHz, поэтому, к примеру, 500 МГц процессор не хотел садиться даже на 75Мгц FSB.

Плюсы:

  1. Низкая цена.
  2. Совместимость со старыми платами на Slot1, PPGA, FCPGA.

Минусы:

  1. Низкое быстродействие.
  2. Невысокие тактовые частоты.

Резюме: Недорогой процессор для выполнения несложных офисных задач.

Intel Celeron II (Coppermine128/Tualatin)

Тактовые частоты: От 533 до 766Мгц – 66MHz FSB, от 800 до 1100MHz – 100MHz FSB для Coppermine128. От 1200 до 1500Мгц для Tualatin

Технические характеристики:

Coppermine128: 32kb cache L1, 128kb cache L2. 0.18мкм, напряжение зависит от частоты: от 1.5 до 1.75В. Рассеиваемая мощность: от 11Вт до 30Вт. Tualatin: 32кб cache L1, 256kb cache L2. 0.13мкм, напряжение: 1.475В. Рассеиваемая мощность: от 30 до 38Вт.

Упаковка:

Coppermine128: FC-PGA корпус, зелёного цвета. Процессор может быть установлен в мат. плату с разъёмом Slot1 при наличии переходника. О его поддержке мат. платой можно узнать на сайте производителя, возможно придётся перешивать БИОС. Связано это с тем, что не все старые мат. Платы под Slot1 умеют выставлять напряжение 1.75В.

Tualatin: FC-PGA2 корпус, зелёного цвета со специальной защитной крышкой-распределителем тепла (Integrated Heat Spreader), способствующей более лучшему охлаждению ядра, а также защитой от механических повреждений. Процессор нельзя установить в старую мат. Плату без вмешательства паяльника (старые мат.платы не поддерживают питание 1.475В и прошивкой нового БИОСа ситуацию не исправишь).

Наборы команд:

Имеет два модуля ММХ, конвейерный блок вычислений с плавающей точкой, 8 дополнительных регистров и 70 дополнительных инструкций SIMD (SSE). Tualatin дополнительно имеет улучшенный блок предсказания и кэширования данных, которые могут потребоваться процессору для текущих операций, что даёт прирост производительности на несколько процентов.

Быстродействие:

Coppermine128: Отстаёт от: Intel Pentium III, AMD Duron/Athlon. Опережает: Intel Celeron I, AMD K6/K6-2, VIA/Cyrix. Tualatin: Отстаёт от: AMD Athlon. Опережает: Intel Celeron I/Pentium4, AMD K6/K6-2, VIA/Cyrix. Наравне с Intel Pentium III, AMD Duron.

Разгон:

Coppermine128: Потолок примерно 1200Мгц. Младшие модели относительно хорошо разгоняются (к примеру, 600Мгц разгонялся до 900-950Мгц). Tualatin: Потолок примерно 1700-1750 МГц. За счёт применения 0.13мкм технологии процессоры разгоняются неплохо, мешает разгону увеличенный кэш L2.

Плюсы:

  1. Неплохое быстродействие (для Tualatin).

Минусы:

  1. Низкое быстродействие (для Coppermine).
  2. Относительно высокая цена.
  3. Нет версий с FSB 133MHz.

Резюме: Coppermine достаточно медленный процессор. Предназначен для модернизации старых систем. Покупать компьютер на базе Celeron Coppermine считаю экономически нецелесообразным. Celeron Tualatin – неплохой процессор, который может занять почётное место в машине не очень требовательного геймера.

Intel Pentium III (Coppermine/Tualatin)

Тактовые частоты: От 533 до 1133Мгц для Coppermine (Индекс Е означает 100Мгц FSB, EB – 133MHz FSB). От 1133 до 1266Мгц для Tualatin cache L2 256kb, от 1133 до 1266Мгц для Tualatin L2 512kb

Технические характеристики:

Версия Tualatin с 512кб кэш-памяти первоначально задумывалась как серверный вариант процессора, и называлась Pentium III-S. Никаких отличий от версии с 256кб КЭШа, кроме чуть пониженного напряжения, нет.

Coppermine выпускается по 0.18мкм, а Tualatin по 0.13мкм технологии. Частота FSB может быть 100 или 133Мгц. Кэш L1 – 32kb. Напряжение для Coppermine – 1.65-1.7В, для Tualatin L2 256kb – 1.475B, для Tualatin L2 512kb – 1.45B. Мобильные версии процессоров всегда оснащаются 512-ю килобайтами КЭШа L2. Рассеиваемая мощность – от 20 до 35Вт.

Упаковка:

Версии процессоров для разъёма Slot1 уже не выпускаются. Сейчас процессоры имеются в двух видах корпусов: FC-PGA ((Coppermine) небольшой чёрный кристалл на зелёном пластиковом корпусе для разъёма Socket370) и FC-PGA2/Socket370 ((Tualatin) зелёный пластиковый корпус со специальной защитной крышкой-распределителем тепла). В Slot1 можно устанавливать процессоры в корпусах FC-PGA через переходник. Процессоры на ядре Tualatin установить в старую мат. Плату не удастся без перепайки.

Наборы команд: Те же, что и в Celeron на аналогичных ядрах.

Быстродействие:

Coppermine: Отстаёт от AMD Athlon, AMD Athlon Barton, Pentium III Tualatin. Опережает Intel Celeron/Pentium4, AMD Duron. Tualatin: Отстаёт от AMD Athlon. Опережает Intel Celeron/PentiumIII/Pentium4, AMD Duron.

Разгон:

Процессоры Coppermine обычно разгоняются на 150-200Мгц. Наиболее подходящие для разгона процессоры с частотой FSB 100MHz. Tualatin L2 256kb разгоняются на 200-300Мгц. Tualatin L2 512kb обычно разгоняется на 100-150Мгц. Для Coppermine потолок примерно 1250Мгц, для Tualatin – 1700Мгц.

Плюсы:

  1. Отлично подходит для модернизации (для Coppermine).
  2. Небольшая рассеиваемая мощность.
  3. Хорошее быстродействие (для Tualatin).

Минусы:

  1. Невысокое быстродействие (для Coppermine).
  2. Относительно высокая цена.
  3. Невысокая предельная частота.

Резюме: достойный процессор для домашнего ПК/работы с аудио/видео данными (для Tualatin). Процессор больше всего подойдёт для модернизации компьютера на базе Celeron (для Coppermine).

Intel Pentium 4 (Willamette/Northwood)/Intel Celeron

Тактовые частоты: Celeron: От 1700 до 2000Мгц. Willamette: От 1.3 до 2Ггц. Northwood: От 1.6 до 3.06Ггц

Технические характеристики:

Используется 400Мгц FSB, пропускная способность 3.2 Гб/с. Кэш L1 – 12000 инструкций (8кб), кэш L2 – 256kb (512кб для Northwood) работает на частоте процессора. Технология изготовления 0.18мкм для Celeron и Willamette, 0.13мкм для Northwood. Рассеиваемая мощность – 50 – 70Вт.

Упаковка: Socket423 для Willamette, Socket478 для Celeron и Northwood. Напряжение – 1.7-1.75В для Willamette, 1.475В для Celeron и Northwood.

Наборы команд:

Блок целочисленных операций работает на удвоенной частоте ядра. Добавлены 144 новых SIMD инструкции – набор SSE2 (всего 214 инструкций). Использует новый конвейер – Hyper Pipelined Technology с глубиной на 20 стадий. Улучшенное предсказание переходов и исполнение команд с изменением порядка их следования – Advanced Dynamic Execution.

Быстродействие:

Celeron: Отстаёт: Intel Pentium III/Celeron Tualatin, AMD Duron/Athlon. Опережает: Intel Celeron Coppermine, Via/Cyrix. Pentium 4: Отстаёт: Intel Pentium III/Celeron Tualatin, AMD Duron/Athlon. Опережает: Intel Celeron Coppermine, Via/Cyrix. В зависимости от типа используемой памяти отрыв может уменьшаться.

Разгон:

Celeron гонится достаточно хорошо. Некоторые экземпляры с частотой 2Ггц можно разогнать до 3Ггц при наличии хорошего охлаждения. Объясняется этот факт наличием малого объёма кэш-памяти. Pentium 4 Willamette не лучший объект для разгона. Он по номиналу работает на довольно высоких частотах. 200Мгц средний результат разгона. Pentium 4 Northwood благодаря 0.13мкм технологии гонится довольно неплохо. Для младших моделей средний результат 400Мгц.

Плюсы:

  1. Лидер по тактовой частоте (для Pentium 4).
  2. Набор SSE2.

Минусы:

  1. Не пригоден для модернизации.
  2. Большая рассеиваемая мощность.
  3. Высокая цена.

Резюме:

Pentium 4 хороший процессор для профессиональных высокопроизводительных систем, который, к сожалению, мало подходит для домашних игровых систем из-за плохого соотношения цена/производительность.

Celeron мне трудно рекомендовать в какую-нибудь систему. Сегодняшний Celeron ничего общего не имеет с Celeron-ами предыдущих версий, которые в своё время сочетали отличные характеристики по доступной цене. Процессор абсолютно не нужный по сегодняшним меркам.

Остальные процессоры я не рассматриваю, так как они актуальны только для офисных приложений и очень малому количеству пользователей эта информация будут интересна. В пункте "РЕЗЮМЕ" высказано моё личное заключение. Если кто-то не согласен, пишите.

То же самое, только в таблицах:

Процессор Поддерживаемые чипсеты
Athlon 100FSB VIA KT133/A, KM133/A, KL133/A, KLE133/A, KT266/A, KM266, KT333, KT400, Ali Magik 1, SiS730/733/735/740/745, nVidia nForce/2
Athlon 133FSB Ali Magik 1, VIA KT133/A, KM133, KT266/A, KT333, KT400, AMD760, SiS730/735
Athlon XP 133FSB VIA KT133A, KM133A, KL133A, KT266/A, KM266, KT333, KT400, Ali Magik 1, SiS730/733/735/740/745, nVidia nForce/2
Athlon XP 166FSB Практически все платы на КТ333\400 и nForce2 (на данный момент полный список мне не доступен)
Duron 100FSB VIA KT133/A, KM133/A, KL133/A, KLE133/A, KT266/A, KM266, KT333, KT400, Ali Magik 1,SiS730/733/735/740/745, nVidia nForce/2
Celeron 66FSB
Celeron 100FSB i440BX, i810, i815, VIA PRO 133A/PM133/PL133/PLE133/266, Ali Alladin TNT2, Ali Alladin Pro5, SiS630/633/635
CeleronT 100FSB Как и Celeron128, только в конце модели добавляется Т или В (в Intel мат.платах). Пример: i815B или VIA PRO 133T
CeleronW 400FSB
Pentium IIIC 100/133FSB i440BX, i810, i815, VIA PRO 133A/PM133/PL133/PLE133/266, Ali Alladin TNT2, Ali Alladin Pro5, SiS630/633/635
Pentium IIIT 133FSB
Pentium IIIS 133FSB Как и Celeron128, только в конце модели добавляется Т или В(в Intel мат.платах). Пример: i815B или VIA PRO 133T
Pentium 4W 400FSB Intel845GL/845D/845A/I850/I845PE/I845E/I845G/I845GL, SiS645/645DX/648/650, VIA P4X266A
Pentium 4N 400/533FSB Intel845GL/845D/845A/I850/I845PE/I845E/I845G/I845GL, SiS645/645DX/648/650, VIA P4X266A

В заключение…

Спасибо, что дочитали статью до конца. Надеюсь из неё вы узнали что-нибудь новое. Статья получилась не совсем маленькой:), и, к сожалению:), она будет постоянно дополняться (пока для себя, а если будет у народа интерес, то выложится в инет). Прошу строго не судить, так как это моя первая статья, на написание которой у автора, то бишь меня, ушло немало времени (1.5 месяца). Но как бы то ни было, написанное пригодилось не только мне, но и моим друзьям и знакомым. Значит уже время не было потрачено впустую... Несколько вещей меня подтолкнули к написанию этой статьи:

  1. Вспоминаю себя, когда у меня появился компьютер (~5 лет назад) ... Сначала была просто увлечённость играми и тд. Потом захотелось чего-то новенького... Начал интересоваться разгоном: сначала спалил БИОС у своей видеокарты при попытке изменить начальную заставку с помощью блокнота:), потом память начала плохо работать при переразгоне моего Селерона, потом убил (а может он сам убился:)) Атлон моего соседа... Вот так, методом проб и ошибок, прочтения кучи статей (которые я замучивался искать в инете) и тд. Научился выжимать соки из компьютера (в том числе процессора). И вот решил всё это свести в одну заметку:) для начинающих.
  2. Второй пункт тесно связан с первым: для друзей, знакомых, товарищей и тд., которые засыпают меня вопросами, связанными с разгоном чего-нибудь в их машинках.
  3. Алексея Ф aka finа, которая мне показалась очень интересным материалом, несмотря на то, что всё это я уже знаю. Захотелось сделать нечто похожее, только про другую, не менее значимую часть компьютера.
  4. Конечно же хочу увидеть свою работу на страницах www.сайт. Главное участие, а призы – это уж не мне решать.

В статье постарался совместить FAQ с "учебником по разгону для начинающих". Автор статьи обладает слишком малым количеством скромности, поэтому признаётся: зовут меня Алексей, живу в городе Минске, Беларусь, учусь в БГУ на юридическом факультете. Увлекаюсь девушками, деньгами, авто, компьютерами и тд. В далёком будущем планирую создание сайта по разгону, где будет размещена вся известная мне информация про те компоненты компьютера, которые можно разогнать:). Конфигурация домашнего компьютера:

  • AMD Athlon XP (Palomino) 1600XP@1920MHz (167FSBx11.5@Vcore=2В)
  • Volcano IX+КПТ8 4000RPM
  • Gigabyte 7VAX KT400
  • 256Mb DDR PC2100 CL2.5@167MHz CL2, 2.5.2., 1CMD.
  • Elsa Gladiac 920 (GeForce3) 200/460MHz@250/560MHz
  • HDD 80Gb IBM 120GXP 7200RPM UDMA100
  • CD-RW Teac W54E 4x/4x/32x
  • SB Live! Value
  • Lucent 56K Modem
  • Realtek 8139AS net
  • 15` Monitor Samtron 55B:) Антиквариат

10062 попугайчика в 3DMark 2001SE если кому интересно:). Для всего этого потребовалось: 1. Поменять радиатор с кулером на видеокарте на кулер от PIII, посадить всё это дело на КПТ8+Суперглюк. Прилепить таким же образом радиаторы на памяти (они там вообще, по-моему, были просто приклеены). 2. Повесить вентилятор от корпуса возле видеокарты для дополнительного обдува чипа и памяти. 3. На обратную сторону чипа видеокарты положить кулер от первого пентиума. 4. Поменять радиатор с кулером на северном мосте мат. Платы. Так же, как я это сделал с чипом на видюхе. 5. Посадить радиатор от Р3 на южный мост материнки (до этого был достаточно горячим на ощупь). 6. Поставить вентилятор на корпус для забора воздуха в корпус. 7. Смазать Volcano IX синтетическим моторным маслом Castrol:).

После всего этого можно было подразогнать систему и сбить пыл ревущего вулкана так, чтобы он был не громче остальных кулеров в системе, которых получилось 6+1 на блоке питания. Если будет цифровой фотоаппарат, то выложу фотки:).

Ещё раз напоминаю: почти всё написанное в этой статье проверено мною лично (тем, кто мне не доверяет, могут дальше не читать:)), но использование этих указаний/советов в разгоне своего компьютера производится на ваш страх и риск. Поэтому: (сейчас последует отмазка:)) автор статьи не несёт никакой ответственности за сломанное/спаленное оборудование.

Благодарности и неблагодарности:

Большое спасибо моим соседям - Немцеву Егору и Левину Дмитрию за помощь в оформлении. Сергею Бучину и сайту www.upgrade.ru за избавление меня от написания статьи на тему мостиков Athlon XP (Palomino), по той же причине благодарю Tyl`a, любезно предоставившего мне на пользование статью о мостиках и ногах Thoroughbred`a.

Неблагодарности: моей девушке Ане и моим соседям и друзьям, которые, сами того не зная, отвлекали меня от написания статьи путём подстрекания к пьянкам, барам, кино и тд. Их старания ушли напрасно:). Заранее благодарю тех, кто окажет мне помощь и сделает замечания или дополнения. Не убивайте в себе критика!

Резюме: если не понятны какие-либо слова или выражения, пишите мне на e-mail. С удовольствием растолкую, но я не думаю что какие-нибудь слова вызовут затруднения.

(с) Лисок Алексей

Эта статья была прислана на наш второй конкурс.

Ускорение работы ПК может потребоваться по самым разным причинам. Одни пользователи задумываются о том, как разогнать компьютер, потому что мощности не хватает для игр, другие просто хотят добиться максимальной производительности. Для устаревшей техники разгон является практически единственным способом продлить её срок службы.

О том, как разогнать компьютер, задумались одновременно с его появлением. В процессорах 8088 с тактовой частотой 8 МГц радиолюбители заменяли тактовый генератор, после чего он мог работать на частоте 12 МГц, а значит, на 50% быстрее. В современных компьютерах процесс разгона значительно облегчён, его можно произвести через изменение настроек BIOS.

Существует и соответствующее программное обеспечение, которое позволяет ускорить работу компонентов компьютера прямо из среды Windows. Решение того, как разогнать старый компьютер, кроется в изменении положения специальных джамперов (переключателей) на материнской плате.

Определение параметров компьютера

Разгон оперативной памяти

На быстродействие компьютера оказывает воздействие как объём установленной оперативной памяти, так и скорость её работы. Скорость задаётся таймингами, которые отражают выполнение операций в наносекундах. Соответственно, чем ниже тайминги, тем выше быстродействие памяти. Также на скорость обмена данными влияет и частота системной шины: чем она выше, тем больше операций может быть произведено за секунду времени.

Решения того, как разогнать оперативную память компьютера, разделяются по двум направлениям: через BIOS или программное обеспечение можно попробовать понизить тайминги памяти. Но добиться успеха в этом случае можно, если модули рассчитаны производителем на низкие значения либо когда в BIOS установлены в автоматическом режиме.

Программы для разгона оперативной памяти

Большинство программ очищают и оптимизируют оперативную память. Но есть и такие, которые позволяют производить изменения прямо из среды Windows. К их числу можно отнести RamSmash, Turbo Memory, MemMonster и некоторые другие. Кроме изменения настроек памяти они позволяют контролировать и её физические параметры, что сильно упрощает разгон.

Увеличение частоты работы памяти происходит обычно при разгоне процессора, но в этом случае тайминги приходится повышать, чтобы добиться стабильной работы модулей. Нужно иметь в виду, что при увеличении частоты работы памяти увеличивается и тепловыделение. Поэтому нужно позаботиться об охлаждении, установив радиаторы или более мощные вентиляторы в системный блок.

Разгон видеокарты

Как разогнать компьютер на максимум? В этом случае не обойтись без ускорения работы видеокарты. Для этого используют различные приложения, поставляемые производителями или сторонними разработчиками. Современные видеокарты немногим уступают по производительности процессору и материнской плате.

Они тоже имеют центральный процессор, оперативную видеопамять и внутреннюю шину передачи данных. Поэтому в них разгоняют как графический процессор, так и увеличивают частоту работы видеопамяти. Для обеспечения стабильной работы при этом может потребоваться замена штатной системы охлаждения на более мощную.

Программный разгон видеокарт

Для разгона карт nVidia производителем поставляется программное обеспечение RivaTuner. Для карт семейства Radeon также существует приложение, поставляемое разработчиком - AMD Catalyst. Но существует множество других программ, позволяющих оценить производительность конкретной видеокарты и раскрыть её потенциал.

Дело в том, что производители зачастую используют один и тот же чип, но при этом на младших моделях урезается тактовая частота и некоторые функции по обработке графики. К таким программам можно отнести GF123clk, NVMax, Raid-on Tuner, PowerStrip. Они позволяют настроить параметры обработки графики и производить плавное увеличение частоты работы процессора и памяти.

Ускорение работы жёсткого диска

Перед тем как разогнать компьютер для игр, следует уяснить, что огромное значение имеет быстродействие жёсткого диска. Современные игры активно загружают и обмениваются данными с диском, поэтому медленный жёсткий диск может стать узким местом в производительности компьютера.

Скорость накопителей с вращающимся диском значительно ниже скорости передачи и обработки данных оперативной памятью и процессором. Хорошее решение представляет собой установка в систему твердотельного (SSD) диска. Он способен в 2-3 раза ускорить загрузку-выгрузку данных. При этом цены на эти устройства по мере увеличения объёмов производства продолжают снижаться.

Ускорение работы в Интернете

Одним из решений того, как разогнать компьютер безопасным способом, является ускорение работы в Интернете. В последнее время всё больше приложений и игр работают в онлайн-режиме, поэтому эта задача становится всё более актуальной. Для ускорения используется оптимизация браузера и настройка сетевого соединения.

Вручную изменять настройки браузера и параметров соединения можно при наличии соответствующих знаний и опыта. На помощь обычным пользователям приходят специальные приложения для ускорения работы Интернета. К наиболее распространённым из них относятся:

  • Ashampoo Internet Accelerator;
  • SpeedyFox;
  • Speed Connect;
  • Active Speed;
  • cFosSpeed.

Контроль разгона компьютера

Огромное значение для того, как правильно разгонять компьютер, имеет постоянный контроль параметров всех связанных с разгоном комплектующих. Это достигается путём мониторинга в BIOS, а также с помощью специальных приложений. Наиболее продвинутые из них дают исчерпывающую информацию о температуре, подаваемом напряжении, а также скорости вращения вентиляторов всех компонентов системы.

Мало знать, как разогнать компьютер, еще требуется определить стабильность его работы при нагрузке. Такие функции тоже доступны во многих программах. Для этого используются либо сложные математические функции, либо проигрывание отрывков из компьютерных игр. К наиболее популярным относятся следующие:

  • CPU-Z;
  • 3DMark;
  • AIDA 64;
  • PCMark

Многие производители материнских плат комплектуют свою продукцию соответствующими программами мониторинга физических параметров.

Приложения для общего разгона компьютера

Одним из лучших решений того, как разогнать компьютер безопасным способом, является применение утилит для очистки и оптимизации работы компьютера. Они могут как очищать и настраивать операционную систему, так и вносить изменения в настройки комплектующих для увеличения их производительности.

К недостаткам таких комплексных программ можно отнести высокую продолжительность их работы. Но это объясняется тем, что производится скрупулёзный анализ всех составляющих системы, а некоторые операции, например дефрагментация жёсткого диска, занимают продолжительное время.

Зато в результате действия таких программ можно получить существенный прирост производительности, не внося изменений в работу оборудования. А изменения, приводящие к работе компонентов во внештатном режиме, в любом случае снижают их срок службы. К наиболее известным комплексным утилитам относятся AVG PC Tuneup, Ashampoo Win Optimizer, Glary Utilities и многие другие.

О разгоне мы пишем всегда: наши статьи, новости, мысли – всё посвящено разгону. На сайте есть раздел "Справочник", где имеется общая информация об оверклокинге и мы публикуем множество статей, из которых можно узнать подробности и особенности разгона на конкретных системах. На самом деле этого вполне достаточно для того, чтобы заняться оверклокингом в первый раз, а всё остальное придёт с опытом. Однако я вполне могу представить растерянность новичка, перед которым лежит океан информации, а он просто не знает, с чего начать. Хорошо, когда рядом есть более опытный товарищ, который может объяснить и подсказать, а если нет? В этом случае даже такая элементарная операция, как вход в BIOS, для новичка сравнима с подвигом. В моей почте не уменьшается количество писем, в которых просят показать "на какие кнопочки тыкать", чтобы разогнать процессор. Сегодняшняя статья посвящена кнопочкам.

Разумеется, бездумный "кнопочный" подход к разгону в корне неправилен. Прежде чем нажать, нужно понимать, для чего ты нажимаешь, и к каким последствиям твои действия могут привести. И хотя опасность оверклокинга сильно преувеличена, ничего невозможного нет и существует вполне реальная вероятность вывести компьютер из строя. Поэтому статьи такого рода принято предварять длинными вступлениями, в которых полагается перечислить все опасности и предупредить пользователя об ответственности. Впрочем, длинные скучные вступления всё равно все пропускают, а я полагаю, что нас читают разумные люди, поэтому обойдёмся без предисловий, будем считать, что я вас предупредил.

Итак, сегодня разогнать процессор предельно просто, для этого всего лишь нужно увеличить частоту, на которой он работает. Существует множество программ, с помощью которых можно разгонять прямо из Windows, например ClockGen.

Имеется несколько различных версий утилиты, предназначенных для разных материнских плат и чипсетов. Кроме того, многие производители материнских плат предлагают собственные утилиты для разгона, например EasyTune5 от Gigabyte...

Или CoreCenter от MSI:

Такие программы можно найти на CD с драйверами, который прилагается к материнской плате, а обновлённые версии нетрудно скачать с сайта производителя платы. Можно ли пользоваться этими или подобными утилитами? Конечно можно, иногда это единственный способ прилично разогнать процессор, если материнская плата обладает ограниченными возможностями по разгону из BIOS. Однако, несмотря на кажущуюся простоту и удобство такого разгона, я предпочитаю не пользоваться такими утилитами и тому есть несколько причин. Прежде всего, любая программа не свободна от ошибок, а зачем нам лишние проблемы? Разгон из BIOS позволяет разогнать процессор сразу после старта, а программы начнут работу только после запуска Windows. Кроме того, сама процедура старта компьютера и последующей загрузки Windows может служить предварительным тестом на стабильность работы разогнанного процессора. В общем, если вы хотите разгонять с помощью программ, то не думаю, что у вас возникнут серьёзные затруднения: предварительно можно почитать описание программы на сайте производителя или в руководстве по материнской плате, мы же сегодня рассматриваем только разгон из BIOS.

Как туда попасть? Для этого при старте компьютера обычно достаточно нажать клавишу "Delete", можно сделать это несколько раз, чтобы не промахнуться. Не стесняйтесь читать надписи, которые появляются на экране, а так же предварительно пролистать руководство к плате, поскольку иногда для входа в BIOS используется другая клавиша или их сочетание, а для доступа ко всем опциям на материнских платах Gigabyte, например, после входа в BIOS нужно нажать Ctrl-F1. В результате вы должны увидеть примерно такую картинку:

Не стоит пугаться обилия незнакомых слов, несмотря на различие версий BIOS, а также на тот факт, что одни и те же опции могут называться по-разному, мы без труда отыщем то, что нам необходимо.

Для разгона нам нужно увеличить частоту работы процессора, которая складывается из произведения множителя на частоту шины. Например, штатная частота процессора Intel Celeron D 310 равняется 2.13 ГГц, его множитель х16, а частота шины 133 МГц (133.3х16=2133 МГц). Значит, нам нужно увеличить либо множитель, либо частоту шины (FSB), либо оба параметра одновременно. Современные процессоры Intel не позволяют изменять множитель (некоторые старшие модели могут уменьшать его до х14, используя технологии энергосбережения), некоторые процессоры AMD могут это делать, однако для начала рассмотрим общий случай – разгон с помощью увеличения частоты шины, тем более что этот путь позволяет больше увеличить общую производительность системы.

Почему? Да потому, что в компьютере многое взаимосвязано и синхронизировано. Например, увеличивая частоту процессорной шины, мы одновременно повышаем частоту работы памяти, растёт скорость обмена данными и за счёт этого дополнительно поднимается производительность. Правда, тут есть и своя оборотная сторона, ведь разгоняя процессор и память одновременно, мы можем остановиться раньше времени. Зачастую получается так, что процессор ещё способен на дальнейший разгон, а вот память уже нет. В настоящее время только материнские платы на основе чипсета NVIDIA nForce4 SLI Intel Edition умеют разгонять процессор независимо от памяти, таких плат пока очень мало, значит, скорее всего, у вас не такая. Поэтому, прежде чем разгонять процессор, нам нужно заранее позаботиться о том, чтобы нас не ограничивала память или что-то ещё.

Ищем опцию в BIOS, которая отвечает за частоту работы памяти. Она может находиться в разных разделах и иметь разные названия, поэтому предварительно неплохо уточнить это в руководстве к материнской плате. Чаще всего эта опция встречается в двух разделах: либо относящихся к разгону и таймингам памяти, либо к разгону процессора. Первый может называться Advanced Chipset Features или просто Advanced, как у ASUS. Здесь параметр называется Memclock index value и измеряется в мегагерцах:

А может находиться в разделе POWER BIOS Features, как у EPoX, называться System Memory Frequency или просто Memory Frequency и обозначать частоту памяти как DDR400, DDR333 или DDR266, а может PC100 или PC133.

Для нас всё это не играет ни малейшей роли, наша задача – найти этот параметр и установить для него минимальное значение. Выбор нужного значения может проходить разными путями, которые зависят от версии BIOS и производителя. Можно, например, нажать Enter и выбрать требующееся значение из появившегося списка с помощью стрелок на клавиатуре, а иногда можно перебирать значения с помощью клавиш Page Up, Page Down, "+" или "–".

Для чего мы устанавливаем минимальную частоту памяти, ведь она у нас, скорее всего, вовсе не такая уж слабая и способна на большее? При разгоне процессора мы будем увеличивать частоту FSB, частота памяти тоже будет подниматься, однако есть надежда, что увеличиваясь с минимально возможной, а не с номинальной величины, она останется в допустимых для нашей памяти пределах, не будет лимитировать разгон процессора. Для верности можно установить для памяти тайминги побольше тех, что выставляются по умолчанию.

Во-первых, это ещё дальше отодвинет предел стабильной работы для нашей памяти. Во-вторых, при автоматической установке таймингов возможна такая ситуация, что материнская плата по ошибке установит слишком маленькие, неработоспособные значения, а так мы будем уверены, что для памяти установлены гарантированно рабочие тайминги. Чтобы в этом убедиться, нужно не забыть сохранить изменения в BIOS и рестартовать. Для этого выбираем параметр Save & Exit Setup или нажимаем F10 и подтверждаем серьёзность своих намерений нажатием клавиши Enter или "Y" (Yes) в старых версиях BIOS.

В большинстве случаев установки памяти на небольшую частоту достаточно и можно сразу приступать к разгону процессора, однако мы не будем спешить и убедимся, что нам ничто не помешает.

Когда я говорил о том, что в компьютере многое взаимосвязано, я не упомянул, что одновременно с частотой процессорной шины увеличивается не только частота памяти, но и другие частоты, например, на шинах PCI, Serial ATA, PCI-E или AGP. В небольших пределах это даже хорошо, поскольку слегка ускоряет работу системы, но при значительном превышении частот над номиналом компьютер может отказаться работать. Номинальные частоты шины PCI – 33.3 МГц, AGP – 66.6 МГц, SATA и PCI Express – 100 МГц. Почти все современные чипсеты умеют фиксировать частоты на штатных значениях, однако на всякий случай лучше в этом убедиться самому. Для этого нужно найти параметр, который обычно называется AGP/PCI Clock, и выбрать для него значение 66/33 МГц.

Вышесказанное справедливо для чипсетов Intel, предназначенных для процессоров Pentium 4, а так же для чипсетов NVIDIA и последних чипсетов SiS, однако это не так для ранних чипсетов Intel, SiS и VIA, вплоть до самых последних. Они не умеют фиксировать частоты на номинале. На практике это означает, что если у вас материнская плата основана на чипсете VIA K8T800, к примеру, то при разгоне вряд ли вы сможете превысить частоту FSB 225 МГц. Даже если ваш процессор способен на большее, вы вынуждены будете остановиться из-за того, что перестанут определяться жёсткие диски или откажется работать интегрированная на плату звуковая карта. Впрочем, попытаться можно и позже мы об этом ещё поговорим.

Для чипсетов NVIDIA, предназначенных для процессоров AMD с разъёмом Socket 754/939, имеет большое значение частота шины HyperTransport. По умолчанию она равна 1000 или 800 МГц, перед разгоном желательно её уменьшить. Иногда пишется её реальная частота, но чаще используется множитель х5 для частоты 1000 МГц и х4 для 800 МГц.

Параметр может называться HyperTransport Frequency, или HT Frequency, или LDT Frequency. Нужно найти его и уменьшить частоту до 400 или 600 МГц (х2 или х3).

Итак, мы уменьшили частоту работы памяти и шины HyperTransport, зафиксировали частоты шин PCI и AGP на номинале и пора приступать к разгону процессора. Для этого нам нужно найти раздел Frequency/Voltage Control...

Который у EPoX может называться POWER BIOS Features...

У ASUS – JumperFree Configuration...

А у ABIT носит название μGuru Utility:

Разница в названиях нам не помешает, мы ищем пункт CPU Host Frequency, или CPU/Clock Speed, или External Clock, или параметр с другим похожим именем, который управляет частотой FSB. Его-то мы и будем менять в сторону увеличения.

Насколько увеличивать? Не знаю. Многое зависит от вашего процессора, материнской платы, системы охлаждения и блока питания. Начните с малого, попробуйте увеличить частоту с номинальной на 10 МГц – в большинстве случаев это должно сработать. Не забудьте сохранить изменённые параметры, загрузитесь в Windows, убедитесь, что процессор действительно разогнался с помощью утилиты типа CPU-Z, и проверьте стабильность работы разогнанного процессора в какой-нибудь программе (Super PI, Prime95, S&M) или игре. Разумеется, предварительно нужно убедиться, что с неразогнанным процессором эта программа или игра работает совершенно стабильно. Не забывайте контролировать температуру процессора, очень нежелательно превышать 60° Цельсия, но чем она будет меньше, тем лучше.

Владельцам процессоров Intel Pentium 4 и Celeron на их основе следует в обязательном порядке использовать утилиты ThrottleWatch, RightMark CPU Clock Utility или нечто подобное. Дело в том, что при перегреве эти процессоры могут впадать в троттлинг, что выражается в заметном снижении производительности. "Разгон" с троттлингом не имеет смысла, поскольку скорость может падать даже ниже тех значений, которые процессор выдаёт в номинальном режиме. Утилиты смогут предупредить о начале троттлинга, значит, нужно будет позаботиться о лучшем охлаждении или уменьшить разгон.

Если же всё прошло благополучно, то можно ещё немного увеличить частоту и так до тех пор, пока система сохраняет стабильность работы. Как только появятся первые признаки переразгона: зависания, вылеты программ, ошибки, синие экраны или температура поднимется слишком высоко – нужно уменьшить частоту и опять убедиться, что в новых условиях система работает стабильно.

Зачастую вам помогут сориентироваться результаты, опубликованные в нашей Статистике разгона процессоров. Вы сможете примерно оценить, до каких частот способен разогнаться ваш процессор. Только будьте внимательны, не забывайте, что имеет значение не только название процессора, но и тип ядра, на котором он основан и даже его ревизия. Кроме того, даже процессоры из одной партии обладают различным оверклокерским потенциалом, поэтому не спешите устанавливать максимальную частоту из увиденных, безопаснее и надёжнее постепенно подниматься от меньшего к большему.

Впрочем, возможны исключения. Помните, я говорил о старых чипсетах, которые не умеют фиксировать частоты AGP и PCI на номинале? Это так, они действительно не могут поддерживать штатные частоты этих шин во всём интервале частот FSB, однако они обязаны держать их номинальными на стандартных частотах для процессоров. И они делают это с помощью делителей, которые переключаются автоматически, в зависимости от установленной частоты FSB. Стандартными частотами являются 100, 133, 166 и 200 МГц.

Предположим, что при разгоне процессора Duron со 100 до 120 МГц по шине он демонстрировал железную стабильность, а при увеличении FSB до 125 МГц система начинает глючить или вообще отказывается стартовать. Вполне возможно, что достигнут предел разгона процессора, но очень может быть, что лимит ещё далеко, а нам мешают увеличившиеся частоты на шинах AGP и PCI. Это очень просто проверить – нужно сразу установить частоту 133 МГц. В этом случае материнская плата использует другие делители, которые установят номинальные частоты на шинах. Если ваш процессор способен к такому разгону, то вы сможете продвинуться ещё чуть выше.

Нужно ли увеличивать напряжение, подаваемое на процессор? Иногда это действительно может помочь продвинуться дальше, но далеко не всегда. Зато это всегда резко увеличивает тепловыделение, которое и так растёт с разгоном, поэтому я бы не рекомендовал начинать с необдуманного увеличения напряжения. Впрочем, компьютер ваш и если вам его не жалко – делайте, что хотите. Только потом не жалуйтесь.

Что касается изменения множителя процессора, то свободным множителем обладают процессоры AMD с разъёмом Socket A (462), выпущенные до 40-ой недели 2003 года, процессоры AMD Athlon FX, а процессоры AMD с разъёмом Socket 754/939 (кроме младших Sempron) могут уменьшать его. Изменение коэффициента умножения позволяет разгонять более гибко. Например, если у вас старая плата, которая не умеет фиксировать частоты AGP и PCI, то можно разгонять только увеличением множителя, а не шиной, в этом случае частоты останутся на номинале. Возможна иная ситуация: если у вас процессор с достаточно высоким множителем, то его можно уменьшить, чтобы побольше разогнать по шине, ведь это сулит некоторый "бесплатный" прирост производительности. У некоторых процессоров AMD Socket A множитель заблокирован, но их можно "разлочить" или превратить в мобильные, что тоже откроет доступ к изменению коэффициента умножения. В этой статье я не могу рассказать обо всём, несколько работ на эту тему есть на нашем сайте, информация имеется в конференции – найдёте, если это вам потребуется.

А что делать, если система переразогнана, установлены неправильные параметры и плата даже не стартует или запускается и вскоре зависает? Ряд современных материнских плат отслеживает процесс старта и если он прерывается, автоматически плата рестартует, устанавливая для процессора и памяти номинальные значения. Вам остаётся лишь снова войти в BIOS и исправить свою ошибку.

Иногда помогает старт с зажатой клавишей Insert, в этом случае плата так же сбрасывает параметры на номинал, что способствует успешному запуску. Если же ничего не помогает, то нужно отыскать на плате джампер Clear CMOS, при выключенном питании переключить его на два соседних контакта секунды на три и снова вернуть на место. В этом случае абсолютно все параметры сбрасываются на номинал. В следующий раз будьте умереннее в своих аппетитах.

Итак, процессор успешно разогнан, но ваша работа ещё не закончена, ведь не только от частоты процессора зависит производительность системы. Вы не забыли, что в самом начале мы уменьшили частоту работы памяти? Теперь пора её поднять, подобрать оптимальные тайминги. Только эксперименты и советы друзей помогут в этом, далеко не всегда высокая частота гарантирует высокую производительность. Меняйте параметры по одному и тут же тестируйте полученные изменения. Если вы играете в игры, то следующим этапом станет разгон видеокарты .

Как вы понимаете, невозможно в одной статье рассказать обо всём. Нюансов много, но ничего сложного в оверклокинге нет и, со временем, вы во всём разберётесь. Помогут наши статьи, изучение материалов конференции, советы друзей. Не стесняйтесь спрашивать и пользоваться поиском. Скорее всего, ответ на ваш, казалось бы, неразрешимый вопрос уже найден кем-то ещё. Прежде чем разгонять наобум, задумайтесь, ведь неразогнанный, но работающий компьютер, намного лучше разогнанного до полной неработоспособности. Главное – действовать обдуманно, постепенно и у вас всё получится.

Каждый процессор рассчитан на какую-то номинальную частоту. Эта частота указана на его поверхности, указывается в прайс-листах и другой документации. Например, PentiumII-300 должен работать с внешней частотой 300 МГц. Но, как показывает практика - от процессора можно добиться большего. Дело в том, что частота, на которой будет работать микропроцессор, задается материнской платой, поэтому возникает возможность увеличить ее относительно значения, указанного на процессоре. Это и называется разгоном.

Зачем нужен разгон процессора

Да, в общем-то, особенно и не за чем. Разгоняя процессор можно увеличить производительность своей системы процентов на 10. Кроме этого поднять мнение о себе в глазах друзей. Ну и конечно почерпнуть некоторые сведения об устройстве компьютера. Однако, превышая номинальное значение тактовой частоты процессора, система теряет надежность. Впрочем, в большинстве случаев это будет совсем незаметно. Так что главное - это идея сэкономить средства, покупая один процессор, а используя его как другой, более быстрый.

Почему возможен разгон

Для того чтобы понимать теорию разгона, необходимо представлять, как изготавливаются и тестируются процессоры. Модели, создаваемые в одних и тех же технологических рамках (например, 0.25 мкм, напряжение 3.3 В), производятся на одной технологической линии. Затем некоторые образцы серии выборочно тестируются. Тестирование проходит в экстремальных (по напряжению и температуре) условиях. На основании этих тестов на процессор наносится маркировка о номинальной частоте, на которую рассчитан процессор. Учитывая то, что частота берется с некоторым запасом прочности, и что далеко не все кристаллы были протестированы, можно с большой долей вероятности предсказать, что большинство изделий имеют запас мощности по частоте в 10-15%, а то и больше. Кроме того, дополнительный ресурс для разгона можно получить, обеспечив процессору хорошее охлаждение, так как производитель тестирует свои изделия в очень жестких температурных условиях.

Практически все материнские платы для процессоров Pentium и Pentium II рассчитаны на работу не с одним типом кристалла, а с несколькими. Т.е., предоставляют пользователю возможность указать, какой процессор на них установлен. Выбор его тактовой частоты осуществляется путем умножения внешней частоты (той, на которой работает системная шина и оперативная память PC) на один из фиксированных множителей (эти множители обычно кратны 0.5 и находятся в диапазоне 1.5 - 4). Способ установки того или иного умножения и внешней частоты всегда указывается в руководстве к материнской плате и иногда - на самой плате. Возможность выбора внешней частоты и коэффициента умножения внутренней частоты процессора порождает возможность выдать процессор за более быстрый.

Разгон можно осуществлять двумя путями. Во-первых, возможно увеличение множителя внешней частоты процессора (например, с 2.5 до 3), так как в этом случае повышается лишь скорость работы самого процессора, а скорость работы системной шины (памяти) и других устройств не увеличивается. Однако данный способ, хотя и надежен (сбоев можно ждать только от процессора), не дает большого прироста производительности всей системы в целом. Кроме того, в последнее время ведущий производитель процессоров для PC - фирма Intel решила блокировать эту возможность, фиксируя умножение у своих кристаллов.

Второй метод - увеличение внешней частоты без изменения коэффициента или и того и другого (например, с 60 до 66 МГц). Дело в том, что именно от величины внешней тактовой частоты зависит быстродействие таких компонентов компьютера, как кеш второго уровня, оперативная память и шины PCI и ISA (а значит, и все платы расширения). В настоящее время практически все материнские платы поддерживают внешние частоты 50, 55, 60, 66, 75 и 83 МГц. Однако, экспериментируя с внешней частотой, следует помнить, что риск, столкнуться со сбоями в работе системы резко повышается, так как разгоняется не только процессор, но и все остальные компоненты системы. Поэтому, разгоняя систему таким способом, следует быть уверенным в качестве комплектующих (особенно это относится к модулям оперативной памяти).

Перемаркировка процессоров

Однако думать, что такие умные только конечные пользователи в России, несправедливо. Многие китайские, а то и наши, конторы специализируются на перемаркировке кристаллов. То есть они, проверяя разгоняемость процессоров, уничтожают старую и наносят на него более высокую тактовую частоту. Для того чтобы перемаркировать процессор, достаточно уничтожить (соскоблить) верхний слой краски на его корпусе и нанести новые отметки, соответствующие более старшей модели. Купив такой кристалл, человек невольно разгоняет его, и если компьютер после этого работает без нареканий, он может и не узнать, что его процессор пиленый.

Защититься от покупки такого микропроцессора практически невозможно. Однако, можно покупать процессоры в коробке или низшие модели в одном технологическом ряду (например, Intel Pentium 166 MMX). Существуют лишь косвенные признаки для определения пиленности процессора - неровная поверхность, несоответствие маркировок на верхней и нижней сторонах корпуса кристалла, некачественно нанесенная маркировка.

Опасность разгона

Вопрос, которым задаются многие при разгоне - это вопрос о том, не сгорит ли процессор или другие компоненты системы. Однозначно ответить на этот вопрос нельзя. Однако, случаи сгорания процессора крайне редки. Об этом говорит статистика. Только примерно в 0.1% случаев возможны необратимые проблемы. Особенно опасны в этом смысле процессоры Cyrix/IBM, которые горят чаще всего. Кроме того, если материнская плата оборудована не импульсным (отличаемым наличием тороидальной катушки на плате), а линейным источником питания, то возможно повреждение материнской платы при разгоне процессоров Cyrix и AMD из-за большого потребления тока. При повышении внешней частоты, а, следовательно, и частоты шины PCI, возможна потеря данных на винчестере, но сам жесткий диск при этом остается работоспособен. В любом случае, большинство из описанных проблем можно решить. Об этом рассказывается ниже.

Как разогнать процессор

  1. Сначала необходимо определить, к чему стремиться. То есть решить для себя, что Вы будете изменять - внешнюю частоту или коэффициент умножения. Имейте в виду, что на одну ступень по частоте подняться удастся почти всегда, а увеличение множителя частоты даст эффект меньший, чем при таком же увеличении внешней частоты. Кроме этого новые процессоры фирмы Intel, для пресечения разгона и перемаркировки, имеют возможность установить только номинальные коэффициенты для умножения частоты. Поэтому в таком случае возможно лишь манипулирование внешней частотой.
  2. Изучите, как устанавливаются перемычки на Вашей материнской плате для выбранных Вами значений. Многие производители материнских плат не документируют внешние частоты выше 66МГц, потому что такие частоты не документированы для чипсетов фирмы Intel, на которых собрано подавляющее количество системных плат. Недокументированные установки перемычек для своей материнской платы можно посмотреть . И еще, умножение на 3.5 устанавливается так же, как и 1.5. Поэтому, если в руководстве к Вашей материнской плате умножение на 3.5 не указано, можете смело использовать установку для множителя 1.5
  3. Выключите компьютер и переустановите перемычки в соответствии с п.2
  4. Включите компьютер. Если система не запускается (черный экран), значит, Вы переразогнали процессор и компьютер в такой конфигурации работать не будет.
  5. Если компьютер запускается и загружается, то необходимо проверить стабильность его работы. Эта проверка выполняется запуском многозадачной операционной системы (Windows 95/NT) и выполнением приложений, требующих активной работы с памятью, так как операции по пересылке данных сильнее всего прогревают кристалл. В качестве примера можно предложить одновременный запуск архиватора pkzip, просмотр mpeg-файла, и работу пары копий игры Quake, непрерывно переключаясь между ними. Пятнадцати минут стабильной работы в таком режиме вполне достаточно, чтобы сделать вывод об устойчивости системы.
  6. Если компьютер запускается, но не загружается (повисает после вывода таблицы с конфигурацией системы), то за его стабильную работу можно побороться. Такое поведение, скорее всего, вызвано невозможностью нормальной работы жесткого диска, памяти или ISA-карт. Как преодолеть такие проблемы, написано ниже.
  7. При нестабильной работе операционной системы и приложений корень проблемы, скорее всего, кроется в недостаточном охлаждении кристалла. Иногда, правда, такие эффекты наблюдаются при недостаточном уровне логического сигнала. Эта проблема решается на материнских платах, оборудованных возможностью выбора напряжений питания процессора путем его повышения на 0.1-0.2 В. Однако в этом случае об охлаждении надо задуматься еще сильнее. Вопросы охлаждения рассмотрены ниже.

Охлаждение процессора

Одна из самых важных задач, встающих при разгоне процессора - это его охлаждение. Перегрев процессора можно считать главным обстоятельством, препятствующим разгону. В 90 процентах случаев, когда разогнанная система запускается, но через некоторое время начинает сбоить и виснет или сбоит при выполнении приложений, сильно загружающих процессор, причину следует искать именно в перегреве процессора.

Поэтому стоит обзавестись хорошим радиатором с вентилятором, обеспечивающим наилучший отвод тепла. Чем лучше будет вентилироваться весь системный блок, тем стабильнее будет работать компьютер. Кстати, форм-фактор ATX с этой точки зрения значительно лучше, так как корпуса ПК и системные платы, выполненные в соответствии с этим форм-фактором, очень хорошо вентилируются благодаря удачномо расположению компонент. Однако и обычный Baby AT-корпус можно оборудовать дополнительным вентилятором.

Как же правильно выбрать вентилятор? При выборе радиатора следует обратить внимание на высоту и строение собственно железной части (чем выше радиатор, и чем больше на нем выступов - тем лучше), и на высоту вентилятора (чем выше - тем лучше, обычно - 20 или 30 мм). Стоит также учесть, что предпочтительнее вентиляторы, работающие "на вытяжку" (т.е. гонящие воздушный поток вверх, от радиатора).

Во-вторых, очень важно при покупке обратить внимание на способ крепления радиатора к процессору. Существует несколько типов крепежа.

Однако в наилучшем случае радиатор крепится к процессору с помощью изогнутой металлической скобы, которая цепляется за специальные выступы у разъемов Socket 7 (Pentium) и Socket 8 (Pentium Pro). Этот способ следует признать наиболее приемлимым, так как изогнутая скоба хорошо прижимает радиатор к процессору, практически не оставляя места для воздушных "подушек". Но даже при других схемах крепления радиатора можно достигать неплохих результатов. Лучшим является то крепление, при котором воздушная прослойка между процессором и радиатором сводится к минимуму. Этого можно достигать как увеличением силы прижима поверхности радиатора, так и шлифовкой соприкасающихся плоскостей.

Следует отметить, что у Pentium II задача крепления радиатора к процессору решена гораздо лучше, однако, некоторые (особенно ранние) модели поставляются только с пассивными радиаторами (без вентилятора). Пользователям процессоров Pentium II можно посоветовать самостоятельно прикрепить вентилятор к радиатору.

Однако, как бы крепко вы не посадили радиатор на процессор, небольшие воздушные прослойки между поверхностью радиатора и верхом процессора все же останутся. А воздух, обладающий очень низкой теплопроводностью, сильно мешает теплообмену между процессором и радиатором. Ликвидируются эти прослойки обычно путем применения теплопроводящей пасты КПТ-8, сделанной на основе окиси Берилия (BeO), она хорошо проводит тепло, химически малоативна и используется в атомной промышленности как отражатель нейтронов. Паста помещается тонким слоем между процессором и радиатором, обеспечиваю лучшую теплопроводность.

Основные проблемы

В неустойчивой работе на частотах 75 и 83 МГц отмечены:

  • HDD Quantum Fireball, Fireball TM, Fireball ST (проблема решается использованием шлейфа не более 10-15 сантиметров)
  • SVGA на чипе ET6000 - в основном из-за перегрева чипа.
  • SoundBlasters - старых выпусков - проблема решается увеличением IO Recovery

Кроме этого возможны следующие проблемы:

  • Неустойчивая работа. Данная проблема может быть решена изменением временных характеристик ваших модулей памяти (SIMM/DIMM) в сетапе. Например, увеличьте циклы ожидания (wait state).
  • Неустойчивая работа дисковой подсистемы. Или вообще не загружается операционная система, либо выдаются сообщения типа "Missing operation system", при создании архивов они создаются с ошибками, при копировании файлы копируются с ошибками, CD-ROM привод не опознается операционной системой. В этом случае постарайтесь укоротить шлейфы IDE-устройств или если это не помогает, попробуйте принудительно установить в сетапе PIO-mode ваших HDD и CD-ROM приводов на ступень ниже.
  • Неустойчивая работа ISA устройств. Установите в сетапе больший коэффициент деления частоты тактировани ISA шины и задержки операций ввода/вывода (I/O Recovery).

Полезные ссылки

  • Дополнительная информация о разгоне и оптимизации работы PC может быть найдена на сайте нашего партнера www.sysopt.com

Существует два самых популярных способа разгона процессора. С использование UEFI/BIOS или с использованием программного обеспечения, работающего в операционной системе. Второй способ более простой и позволяет с использованием специализированных утилит выполнять разгон по мере необходимости.

Полезные инструменты

Перед тем как проводить работы по разгону, следует запастись инструментарием, позволяющим просматривать все необходимые параметры материнской платы и процессора и контролировать их в процессе выполнения операций. Универсальным примером такого инструмента может служить программа CPU-Z . Работает она в операционных системах Виндоус и Андроид. Ниже на рисунке, на примере Intel Core i5 , видно, какие характеристики может считывать эта программа. Программа постоянно обновляется, в нее добавляют современные процессоры, и она прекрасно справится и с последними моделями Intel Core i7 и AMD Ryzen .

Несмотря на то, что разгон планируется проводить с помощью ПО, не будет лишним предварительно провести обновление BIOS до последней версии. Это в любом случае добавит материнской плате функциональности.

Ну и само собой разумеется, вы должны быть уверены в том, что система охлаждения электронного друга справится с возросшими нагрузками и тоже готова разгоняться.

Заранее выполнив эти предварительные мероприятия, можно приступать к изучению возможностей специализированного программного обеспечения.

SetFSB

Первая программа, с которой начнем изучать ПО для разгона, будет SetFSB . Как видно из названия, она предназначена для разгона процессора по системной шине . Скачать ее можно на официальном сайте. Отличается данная утилита малым размером и поставляется в виде zip-архива. Распаковав архив, посмотрим на его содержимое, которое представлено ниже.

В папке программы сможете найти текстовый файл setfsb.txt . Открыв его, можно изучить список материнских плат, с которыми она способна работать. Его стоит внимательно изучить, чтобы найти свою модель и удостовериться таким образом, что, запустив ее на своем компьютере, получите ожидаемый результат.

Во время запуска, сначала появится маленькое окошко, в котором потребуется ввести код, указанный в его верхней части. По утверждениям разработчика это послужит дополнительным подтверждением того, что вы понимаете, как разогнать процессор этой программой и берете на себя все последствия своих действий.

Следующее окно уже является основным для этой программы, и в нем надо будет выбрать тип генератора тактовой частоты, который определяется по модели материнской платы и прописан в файле setfsb.txt, который изучался выше.

Выбрав правильный параметр Clock Generator, получите доступ к изменениям его параметров и, соответственно, сможете регулировать частоту работы шины FSB. Выбранные характеристики программа будет хранить до перезагрузки ОС. При желании автоматизировать эту операцию, потребуется разместить в автозагрузку специально созданный в текстовом редакторе bat-файл.

Еще один вариант программы для разгона процессора Intel - . Функциональность ее практически аналогична уже рассмотренной нами SetFSB , в лучшую сторону она отличается только наличием русского интерфейса. Поэтому она вполне может подойти для начинающих оверклокеров, как ознакомительная.

Работа основана на том же принципе, то есть на взаимодействии с «железом» материнской платы. Поддерживаемые платы в этой утилите видны прямо в выпадающем списке, что достаточно удобно. Требуется выбрать производителя и затем указать тип PLL-генератора, который отвечает за увеличение частоты работы системной шины.

После того как были указаны необходимые входные параметры, можно приступать к разгону процессора через программу.

ПО для разгона AMD

В свое время несколько потерявшая свои позиции на рынке процессоров компании АМД сделала хороший маркетинговый ход. Она выпустила серию процессоров FX с разблокированным множителем и разработала свое ПО для оверклокинга. Программа для разгона процессора AMD называется AMD OverDrive и с ней мы сейчас познакомимся более детально.

AMD OverDrive

Итак, первое, что увидите после запуска этой программы для разгона AMD-процессоров, будет традиционное предупреждение от производителей. В двух словах его содержание сводится к тому, что выполняемые операции по изменению параметров процессора могут привести к сбоям в работе вашего компьютера, и, выполняя их, вы отдаете себе отчет в своих действиях и принимаете ответственность. Разумеется, с этим стоит согласиться. Нажав кнопку ОК , откроется главное окно программы с основными параметрами установленного в системе процессора.

Как видно ниже, эта информация аналогична получаемой с помощью программы CPU-Z и дает общую, но исчерпывающую, информацию о характеристиках данного процессора.

Интересующие нас инструменты этой программы для разгона процессоров AMD находятся в расположенном слева разделе «Performance Control ». В нем необходимо выбрать пункт «Clock/Voltage » и приступить к разбору методики работы устройства.

На представленном выше рисунке видим показатели процессора до разгона и, соответственно, параметры доступные для корректировки. Для доступа к изменению значения потребуется включить необходимую функцию с помощью кнопки Turbo Core Control , у которой появится зеленая подсветка выделения перед операцией.

В открывшемся окне необходимо установить галочку напротив «Enable Turbo Core ».

Таким образом, доступ к параметрам процессора получен, и можно переходить непосредственно к разгону. На рисунке хорошо видно, что при смещении ползунка вправо в разделе «Clock » показатель множителя увеличивается на доступные 3 пункта. Несколько выше можно заметить, как показатели частоты работы процессорных ядер смещаются с позиции 3300 на 3900.

Тест, проведенный с помощью утилиты CPU Speed Professional , показывает эффективную частоту работы процессора с множителем 16,5, установленным по умолчанию.

На рисунке ниже показан результат наших манипуляций. ЦП с параметром множителя равным 19,5 разгоняется на 600 МГц.

Достаточно подробно была рассмотрена работа утилиты AMD OverDrive . Надо сказать, что это ПО от производителя прекрасно работает со всей линейкой процессоров и ускоряет их работу, начиная с процессоров AMD Athlon .

Утилиты для материнских плат

Обратим внимание на еще одну область разработок ПО, предназначенного для разгона. Это специализированные утилиты, которые размещаются частью производителей материнских плат на идущем в комплекте диске с драйверами.

Три крупнейших игрока на этом рынке предлагают следующие программы:


На дисках менее известных производителей материнских плат тоже можно поискать аналоги таких программ, с тем лишь исключением, что обычно они идут только с продуктами верхнего ценового сегмента.

Направление развития ПО

Выше были рассмотрены самые популярные решения для работы с процессорами ведущих производителей на этом рынке - компаний Intel и AMD. Стоит отметить, что такое решение, как программа для разгона процессора непосредственно из операционной системы, является отмирающим. К этому ведут современные тенденции развития базовых систем, контролирующих работу «железа». За последние десять лет произошло существенное расширение функций BIOS и переход всех производителей материнских плат на использование UEFI , его расширенной версии.

Фактически UEFI сам стал операционной системой в миниатюре. В нем имеется привлекательный графический интерфейс, и поддерживается работа мыши. Если раньше для редактирования параметров базовой системы ввода-вывода пользователю требовались определенные знания и навык работы с клавиатурными переключениями, то сейчас необходимости в этом уже нет.

Вывод из этого следует следующий. Обладателям процессоров AMD в ближайшее время беспокоиться не стоит. Производитель сам разработал и поддерживает качественную утилиту для разгона, да и последние модели устройств серии Ryzen выпускаются с хорошим потенциалом в этой области. Если же у вас процессор от Intel, то в свете последних событий в индустрии производства материнских плат следует обратить внимание на изучение UEFI . В ближайшие несколько лет старые материнские платы уйдут на заслуженный покой и разгон интеловской платформы можно будет осуществлять исключительно таким способом. Даже несмотря на выпуск серии процессоров «К» с разблокированным множителем, Intel отдает предпочтение работе со своим детищем - UEFI , а сторонние разработчики в таких условиях просто сворачивают свою деятельность.

Заключение

По сложившейся в среде оверклокеров традиции еще раз напомним, что все последствия перевода процессора в ускоренный режим работы лежат только на пользователе, и ни один производитель претензии, в случае неудачно выполненных действий, принимать не обязан и не будет. Не забывайте об этом и всегда будьте осторожны. Лучше достигнуть небольшого, но стабильного результата, чем поторопиться и не получить ничего.

Видео по теме